B-1 Dorsal Longeron Repair Concept Case Study

2006 USAF Aircraft Structural Integrity Program Conference November 30, 2006 - San Antonio, Texas

Randal Edwards, The Boeing Company Soo Oh, The Boeing Company John Morgan, USAF

- History and Background
- Interim Repair
- Results from an Aircraft Ground Strain
 Survey
- The Optimization Process used to Develop the Long Term Repair
- Structural and Non-Structural Testing
- Accomplishments and Looking Ahead

Background of Dorsal Longeron Cracks

Background of Dorsal Longeron Cracks

21

Cracks begin at bolt hole and run to bottom of flange. Cracks growing up from bolt hole advance rapidly.

Background of Dorsal Longeron Cracks

B-1 Bomber

- **Problem:** \mathbf{O}
 - More than 2/3rds of the B-1 fleet have cracks in the Steel Dorsal Longerons
 Cause
 - Aircraft usage more severe than design spectrum Challenges
 - Permanent repairs urgently needed
 - **Gracks growing, numbers increasing**
 - erim bolted strap repairs for cracked caps have Theo

Cracked caps* 2

* Aircraft with cracked caps restricted from flight until interim repair performed

Immediate Actions

- Inspect entire force
- Performed fail safe analysis
- Begin developing interim repair

Safety of Flight Analysis

- Fail Safe analysis performed to determine what happens if one or both dorsal longerons fail completely
- Analysis concluded that even if both dorsal longerons are failed, shoulder longeron can sustain limit load times dynamic factor provided that the shoulder longeron repair doublers are intact.

- Various temporary repair options developed depending on condition discovered at inspection
 - Fastener removal / cold working
 - Scallop repair
 - Bolt on doubler repair

- Fastener Removal
 - Full A/C NASTRAN model used to verify concept and effectiveness
 - Local load distribution only
 - No global effect on rest of A/C
 - Fasteners not reinstalled
 - Currently all A/C in force have fasteners removed
- Cold Working 4 holes (TCTO 1B-1B-1337)
 - Remove 5-7 o'clock crack by reaming up to .50"
 Dia if E.D. is sufficient prior to cold working
 - Fasteners not reinstalled
 - To date three A/C have been cold worked

B-1 Bomber

• Fastener Removal

B-1 Bomber

Scallop Repair

- Mechanica model shows large reduction in stress concentration
- Crack growth analysis demonstrated sufficient life
- Used when crack length beyond that which can be removed by over-sizing hole but no exit crack growing up
- Three A/C have this repair

B-1 Bomber

Scallop Repair (A/C 85-0065 RHS)

2" Radius

B-1 Bomber

Scallop Repair (A/C 85-0073 LHS)

B-1 Bomber

• Bolt on doubler

- Used when exit crack exists
- Extensive Mechanica modeling to verify repair
- Sufficiently restores strength of longeron
- Relatively low predicted life for doublers
- Two A/C have this repair

Interim Longeron Repair

Ground Strain Survey Test

- Most efficient way to verify loads
 - Known conditions can be reproduced on analysis models
- Results used to fine tune analysis models
- Help to understand cause of cracking

Ground Strain Survey Test

B-1 Bomber

• Test Sequence

- 1. Take readings On Gear, leave strain gage system turned on
- 2. Jacks Aircraft and Take readings
- 3. Remove 4 bolts while on jacks, leave bolts out, de-jack
- 4. Take readings On Gear, leave strain gage system turned on
- 5. Jacks Aircraft and Take readings, turn strain gage system off
- 6. Re-install 4 bolts while on jacks, de-jack

Ground Strain Survey Test

B-1 Bomber

• Instrumentation

- Dorsal Longerons, 13 Left Side, 5 Right Side
- Shoulder Longerons, 2 Left side, 2 Right Side
- Total of 22 axial strain gages measuring longitudinal stresses, 1 gage reading vertical stress

Predicted vs Measured Stresses – Gage Locations

B-1 Bomber

Lower Edge Surface of Longeron Standing Leg

Predicted vs Measured Stresses - Model Correlation

Predicted vs Measured Stresses

Predicted vs Measured Stresses – Model Correlation

Repair Development Goals

- Keep B-1 fleet flying safely
- Repair longerons currently with small or no cracks so that they can remain in service until the year 2040
- Economical for fleet wide implementation
- Robust overkill where possible

Repair Design Criteria

- Safety Factors
 - Limit loads = Maximum design loads
 - Ultimate = Limit x 1.5 Safety Factor
 - No yielding at Limit Load
 - No failure below Ultimate Load
- DADT Requirements
 - Slow Crack Growth
 - Spectrum based on actual usage
 - Durability criteria
 - Considers history and damage accrued since production
 - Except cold working restarts clock
 - .010 initial flaw size at non-cold worked holes
 - .010 initial flaw size at cold worked holes times a life factor of 2.0
 - Life predictions of 2040 or greater

Long Term Repair Development

- Many concepts considered
 - 'Brain-storming' sessions
 - Internal and external reviews
- Repair concepts analyzed with Mechanica
- Additional analysis performed on viable alternatives
 - Strength
 - Crack growth
 - Bond line
- Potential challenges considered
- Structural and non-structural testing identified

Repair Approaches and Application

			Repair Applicability			
	Purpose	Implementation	Cracks down that can be reamed out	Cracks down- too big to be reamed out, Cracks up- can be reamed out	Cracks up- too big to be reamed out	Relative Cost
Remove 4 Bolts	Slow Cracking	Fleet	Slow Growth			Very Low
Interim Strap Repair	Restore Aircraft to Flight Status	86-0130, 85-0065			Temporary Repair	Med
Scallop Repair	Delay cracks from growing up	85-0065, 85-0073		Temporary Repair		Low
Bonded Doubler	Permanent Repair for Small Cracks	Under Development	Permanent Repair		Possible supplement to make Strap Repair a Permanent Repair	Low
Bonded Doubler, Scallop & Bolted Strap	Supplement to Bonded Doubler	Under Development		Permanent Repair		Low - Med
Replace Longeron	Permanent Repair for Large Cracks	Under Development			Permanent Repair	Very High

Permanent Repair Approaches for Majority of Fleet

				Repair Applicability		
	Purpose	Implementation	Cracks down that can be reamed out	Cracks down- too big to be reamed out, Cracks up- can be reamed out	Cracks up- too big to be reamed out	Relative Cost
Remove 4 Bolts	Slow Cracking	Fleet	Slow Growth			Very Low
Interim Strap Repair	Restore Aircraft to Flight Status	86-0130, 85-0065			Temporary Repair	Med
Scallop Repair	Delay cracks from growing up	85-0065, 85-0073		Temporary Repair		Low
Bonded Doubler	Permanent Repair for Small Cracks	Under Development	Permanent Repair		Possible supplement to make Strap Repair a Permanent Repair	Low
Bonded Doubler, Scallop & Bolted Strap	Supplement to Bonded Doubler	Under Development		Permanent Repair		Low - Med
Replace Longeron	Permanent Repair for Large Cracks	Under Development			Permanent Repair	Very High

Doubler Sizing Consideration

B-1 Bomber

- Delicate balancing act to <u>not</u> chase cracking elsewhere
 - Originally thought only isolated area needed to be fixed
 - Analysis determined that there are many more "hot spots" on longeron
 - Developing repair more complicated than anticipated

Thicker repair doubler reduces stress and increases life locally but attracts more load to longeron decreasing life elsewhere

Doubler Material Selection

- Metallic versus Composite
 - Both considered
 - Thermal expansion compatibility mandated use of steel over composite

Dorsal Longeron Repair OML Doubler

Dorsal Longeron Repair OML Doubler

Dorsal Longeron Repair IML Doubler

Structural Testing

B-1 Bomber

• Structural testing

- Coupon test
- Full scale fuselage top deck test

Bondline testing

- Thermal Dissipation on A/C during curing
- Bondline mismatch of complex surface
- Vacuum bagging of large area of A/C during bonding process
- Surface preparation of steel
- Vacuum cure properties of adhesive

Coupon to demonstrate cause of cracking

B-1 Bomber

- Demonstrate that cause of cracking is understood
- Validate models and spectra
- Baseline Test specimen
 - Simulates cracked area, match stress around 1st hole
 - Symmetric about center to obtain 2 samples of data
- Test load spectrum
 - Based on latest actual A/C usage (2003 DADTA)
 - 100 flight block
 - Very few negative loads in spectrum removed
 - Cycles with low range removed
 - Account for insignificant amount of damage
 - Reduce number of cycles needed for test
 - Minor adjustments made to remaining cycles to analytically match predicted life
- Duration 2 A/C lives or catastrophic failure
- Periodic bolt hole NDI

1) LD117-0020-0512 Boh 1) LD153-0023-005 Cat Weider K-Ruler Bok Head 2) LD153-0027-2005 Part Header KSn Nie Sola 2) LD11-0257-2005 Ho -Lan Bok Head on Place Stot

60000

Coupon to demonstrate cause of cracking

Coupon to demonstrate cause of cracking

Full Scale Fatigue Test Article

B-1 Bomber

Reclaimed structure from retired B-1 at AMARC

Full Scale Fatigue Test Article

- Test article Yf 542-Yf 992, A/C 84-0056
 - No crack in either of dorsal longerons
 - Accumulated 4720 flt hrs (Fleet avg = 5556, Max = 7178, 06/2006)

Support at Frame (Typical)

Full Scale Fatigue Specimen FEM

- Generated NASTRAN FEM of the 40-ft test article
- Model dummy LH & RH shoulder longerons of various thickness to control the load in the dorsal longeron
- Longitudinal loads applied @ aft end of dorsal longeron
- Bending loads (vertical) applied near crack location
- Loads will be reacted with fittings on the dummy shoulder longerons @ fwd end
- Supports allow for-aft or longitudinal movement
- Matching loads in dorsal longerons
 - YF 542.00 to YF 648.00 bad correlation (greater than 2.0%)
 - YF 648.00 to YF 962.00 good correlation (within 2.0%)
 - YF 962.00 to YF 992.00 bad correlation (greater than 2.0%)
 - Dorsal longeron splice @ YF 820.50, cracked area @ YF 927.00

Full Scale Fatigue Test Sequence

- Pre-test inspection
 - Hot spots identified by FEM and DADTA
- Strain survey checkout
- Fatigue cycle to crack initiation
 - Expect crack initiation at hole 1
- Stop and perform doubler repair
 - External bonded doubler and internal bolted doubler
- Fatigue cycle 1 additional life
- Stop and induce crack(s) for damage tolerance testing
- Damage tolerance cycle 2 additional lives
- Residual strength test at design limit load
- Tear down inspection

Risk Reduction Activities for Bonding

B-1 Bomber

• Thermal survey at AMARC

- Check ability to achieve required bond line temperatures
- Check ability to achieve good seal to aircraft for vacuum bagging
- Photogrammetry survey at AMARC
 - Check variation in mold line between various vintage of aircraft
 - Calculate resulting variation in bond line thickness
- Laboratory Adhesive Testing

Thermal Survey at AMARC

- Vacuum Bag, Heater Blankets, multi channel Controller
- Required temperature 250 F achieved in steel, no hot spots in aluminum
- Minimal leakage, structure well sealed at fastener holes

Mold Line Survey at AMARC

Photogrammetry

- 4 aircrafts
- LH & RH dorsal longerons mold line scan

RHS Longeron OML Delta (Actual – Loft)

Accomplishments

- Developed unique temporary repairs
- Improved analysis tools
- Conducted ground strain survey test to correlate aircraft stress levels with FEM's
- Fabricated and currently testing baseline crack verification coupon
- Examined entire longeron, not just where it cracked
- Examined root causes and effectiveness of various repair concepts
- Conducted tests at AMARC to determine feasibility of bonded repair
- Developed and traded multiple repair concepts
- Developed adhesive test plan and have begun adhesive coupon testing
- Developed and released detail drawing for repair strap
- Excised full scale test specimen from AMARC
- Developed concept for test set-up for full scale test specimen

Look Ahead

- Verification fatigue test
 - Lab test using top center section of reclamation aircraft
 - Prove cause of cracking
 - Test effectiveness of repair
- Conduct adhesives test
 - Surface prep variables
 - Standard lap shear (ASTM D-1002)
 - Thick adherend lap shear (ASTM D-5656)
 - Flatwise tension (ASTM D-2095)
 - Dog bone small scale bond line stress simulation test
- Working long lead items in preparation for prototype repair of fleet aircraft
 - Repair doubler material
 - Replacement longeron
 - Hardware

Questions

Additional Thanks to: Rick Binder, The Boeing Company John Gurbach, The Boeing Company Tom Nguyen, The Boeing Company Gavin Evans, USAF Rodney Harberson, USAF

