Bonded Repair of a F-16 Bulkhead Flange

David Wieland, Southwest Research Institute Matt Malkin, Boeing Phantom Works

WTICAL ASTEN

Background

- USAF has a large aging aircraft fleet with age related structural damage
- Inspection and repair of aging fleet is extremely expensive
- Bonded repairs have the potential to reduce repair costs and eliminate component replacements
- SHM systems have the potential to track health of the bond lines and crack growth

Program Objective

- Extend bonded composite patch technology to to thick structures and/or complex geometries
- Using specific aging aircraft structural components
- Early Test of SHM System

F-16 Bulkhead

 F-16 341 bulkhead flange chosen as the demonstration article for the thick/complex bonded repairs.

F-16 341 Bulkhead Attach Flange Radii

- Addresses Various Thickness
- Complex Load Path
- Thickness Constraint
- Complex Geometry
- Fastener Holes
- Good ROI

F-16 341 Bulkhead Longeron Attach Flange Radii

- Fatigue crack
- Small radii
- Current repair
 - Blend out crack
 - Replace fitting when cracks to large

F-16 341 Bulkhead Repair Preliminary Design and Analysis

- Lockheed provided section of bulkhead FEM
- Swri modified Lockheed FEM to include fine mesh model of bulkhead flange

F-16 Continued

Repair Design

- Blend out Crack in Radius
- Bonded aluminum angle repair with a composite keel patch

Updated FEM

- Baseline FEM
 updated
- Removed flange material
 - Simulate a blended repair with 1.5" Radius
- Aluminum doubler extended to original bulkhead geometry with 1.5" radius

Updated FEM

- Reran FEM baseline to determine test radius target stress
- Compared baseline to repaired stress analysis
- 60% reduction of stress at crack
- Finalized design
- Repair not shown for clarity

Repair Redesign Coupon

- 0.08 inch thick 2024 aluminum doubler with 1.5 inch radius
- Composite keel patch
- Surface preparation
 - Grit Blast Sol-gel
 - AC130 Kit
 - Bonding Primer
 - Cytec BR 6747-1

Repair Testing

- Coupons tested with 0.05 inch initial flaws
- Out of plane test constraints
- Spectrum loading
- 2 unrepaired baseline tests
- 2 repaired test

Repair Testing Continued

- Final Repair Designed
 - 0.08 inch thick 2024 aluminum doubler with 1.5 inch radius
 - Boron keel patch
 - Surface preparation
 - Grit Blast Sol-gel
 - AC130 Kit
 - Cytec BR 6747-1 Bonding Primer
- Testing Indicated greater than a 6 to 1 life improvement

Prototype F-16 Repair Installation

- Based on analytical and test results, repair approved for prototype installation
- Repair installed at Hill AFB
- Will monitor repair performance for 12-18 months
- In active service since March 2006

Prototype Repair Installation

Bonded Repair First Flight

- SwRI, Boeing and Hill AFB engineers were present for first flight
 - Repair inspected for indications of damage

Repair Status

- Installed prototype repair on an F-16
- Repair currently flying in normal usage environment
- Using a SHM System to Monitoring Repair

Structural Health Monitoring (SHM) Sensor

- Coupon testing
- Boron/epoxy patches on aluminum plate
- 3 rounds of tests, using multiple sensor types
- Evaluated sensor system

Flat Coupon Testing Results

*** SHMER Component Test Results *** Sensor System: SMART Layer Specimen Configuration: Disbond Growth Specimen Number: 1

Date	Time	Cycles	Disbond àrea	Disbond Area	Uncertainty
01/06/05	05:46:52	10500	0.125		
01/06/05	05:57:46	11000	0.125		
01/06/05	06:11:14	11500	0 188		
81/06/05	05:48:26	12000		0.255	±0.151
01/06/05	07:11:38	12500		0.272	±0.170
01/06/05	07:28:12	13000		0.438	±0.360
01/06/05	07:40:32	13500		0.710	±0.672
01/06/05	07:55:10	13800		2.154	±2.545

F-16 Bulkhead Coupon

SHM Sensor on F-16 Coupon

F-16 Coupon Testing

Conventional NDI

25

SHM Sensor Results

Piezoelectric phased array

Piezoelectric pitch-catch

F-16 Main Gear Wheel Well

SHM Sensor Installed on Bonded Repair

SHM Sensor Installation (Continued)

SHM Sensor Installation (Continued)

In service SHM

Market In-Service Experience

SHM Conclusion

Capabilities

- A. Operation in difficult environment.
- B. Sensor durability once installed.
- C. System operation in a realistic environment.
- D. Multiple output methods.

Limitations

- A. Correlation between structural change and physical phenomena (accuracy, resolution).
- B. Reliability of wiring connections.
- C. Wire weight and complexity.
- D. Sensor density.
- E. Fragile transducer elements.
- F. Data acquisition size and complexity.
- G. Sensitivity.
- H. Acceptance by maintenance and certification community.

SHM Future Work

- Wireless sensors.
- Environmental testing.
- New sensing materials/methods.
- Sensor density studies.
- Miniaturization and strengthening of data acquisition equipment, user interface.
- Algorithm development.
- Study effects of noise sources.
- Further development of support philosophy and actions.