Fatigue Crack Propagation and Stable Tearing in Friction-Stir-Welded Aluminum Sheet

Presented by:

Eui I. Lim The Boeing Company

At:

ASIP 2006 San Antonio, Texas November 28, 2006

Collaborative Effort

Initiation

- Seemingly Consistent Crack Turnings
 - FCGR test on 7xxx-T7 Sheet
 - 3 Samples each, from 3 Lots

FSW sample

Base metal

ASIP 2006

3

Motivation

- Understand Phenomenon
 - Why did the Cracks Turned?
 - Can it be Captured, and Controlled?
- Via Experiments
 - FCGR and stable tearing
 - C(t) and M(t) coupons
 - Cracks to FSW @ 90° & 45°

Outline

- 1. Material and weld properties
- 2. Fatigue tests
 - Geometry
 - Crack path
 - da/dN curves
 - Residual stress measurements
- 3. Stable tearing tests
 - Crack path
 - **Properties**
- 4. Fractography

Material and Welding Description

- Aluminum 7xxx-T7 Sheet , t = 5mm.
- Post Weld Aging heat treat to stabilize properties of the weld.

Profile of the Tool :

Weld Properties

Hardness Profile

Outline

- 1. Material and weld properties
- 2. Fatigue tests
 - Geometry
 - Crack path
 - da/dN curves
 - Residual stress measurements
- Stable tearing tests 3.
 - Crack path
 - **Properties**
- 4. Fractography

C(T) Samples

Crack Path 90° Orientation

Fatigue cycling at constant $\Delta K = 15 \text{ MPa}^{1/2}$

Propagation along straight line, slight deviation angle.

Crack Path 45° Orientation

Curved crack path.

Fatigue Results

R=0.5 ΔK=15MPa*m^{1/2}

Fatigue Results

R=0.1 Δ K=15MPa*m^{1/2}

Residual Stress Evaluation

By "Cut Compliance" technique - Measure $\Delta \epsilon$ at each additional cut

Forward determination of the stress intensity factor due to residual stresses :

$$K_{Ires}(a) = \frac{E'}{Z(a)} \frac{d\varepsilon}{da}$$

where Z(a): a geometrical function

ASIP 2006

16

Residual Stress Profile Calculated from K

Outline

- 1. Material and weld properties
- 2. Fatigue tests
 - Geometry
 - Crack path
 - da/dN curves
 - Residual stress measurements
- 3. Stable tearing tests
 - Crack path
 - Properties
- 4. Fractography

Stable Tearing - Parent Material

Rolling Direction appears to be the Preferred Path for Crack Extension.

Stable Tearing - Welded Samples

Crack turns so it extends along the L direction.

Combined effect of the microstructure and the welding?

Stable Tearing Data

Stable tearing data

Outline

- 1. Material and weld properties
- 2. Fatigue tests
 - Geometry
 - Crack path
 - da/dN curves
 - Residual stress measurements
- Stable tearing tests 3.
 - Crack path
 - **Properties**
- Fractography 4.

Fractography – Fatigue R=0.1

SEM pictures of Fracture Surface

Inside the nugget

Appears mostly inter-granular

Fractography – Fatigue R=0.5

ASIP 2006

25

Stable Tearing – Nugget

ASIP 2006

26

Summary

- Weld characterization:
 - With appropriate welding parameters, weld UTS would be 86% of the base material.
- Crack path:
 - For 90° oriented fatigue samples, propagation along a straight line, with sometimes a slight deviation angle observed.
 - For 45° oriented fatigue sample, curved crack path.
 - In base metal stable tearing tests, the rolling direction is often a preferred path direction for the crack.

Summary

- Fatigue crack growth rate :
 - Compared to parent material, reduced crack growth rate is observed in the HAZ. This reduction is higher for lower R.
 - Residual stress seem to have a predominant effect in this variation. Closure and microstructure might also be involved.
- Fractography:
 - In fatigue, fracture is mostly inter-granular. The surface is rougher for higher R.
 - In stable tearing, the fracture is also clearly inter-granular.

Future Work

- Investigate Residual Stress Affect due to FSW
- Acquire Crack Growth Properties Along the Weld, HAZ from both the Advancing Side and the Retreating Side of the Weld
- Acquire Crack Growth Properties Across the Weld, HAZ from both the Advancing Side and the Retreating Side of the Weld
- Repeat Testing and Data Acquisitions for other Materials Commonly used in FSW

