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ABSTRACT 
This paper presents the current investigation stage of Multiple Site Damage (MSD) assessment 
by the Structural Integrity Group from the Brazilian Air Force (FAB) located at the Aerospace 
Technical Center (CTA), Brazil. 
Among all aeronautical structures prone to develop MSD, riveted lap joints in the fuselage have 
been identified as being the most susceptible. Recent recommendations by regulators to avoid 
MSD threat stipulate an Inspection Starting Point (ISP) and a Structural Modification Point 
(SMP) in the life of aircraft. These points can be defined with the help of MSD analysis and the 
capability to accurately calculate service life to MSD onset becomes of considerable 
importance. To investigate this failure mode, a probabilistic model for MSD assessment 
considering both fatigue crack initiation and crack propagation as random variables is used. 
Previous publications from the author demonstrated the effectiveness of this model by providing 
good agreement with experimental work on fatigue of riveted lap-splice joints. The literature 
widely reports the use simple fatigue test specimens, manufactured using aircraft standards 
(material, rivets and assembly techniques), to derive S-N fatigue initiation data for MSD 
assessment models. A direct consequence of this practice is that MSD models can be actually 
describing MSD behaviour of flat lap joint panels in laboratory environment and not real 
aircraft structures.  
This work presents the MSD assessment results compared to teardown data obtained from in-
service fuselage panels of aging aircraft. Evidences from in-service MSD detection strongly 
indicate that S-N input data obtained from good quality riveted flat lap joint test specimens can 
not be used for MSD assessment of real aircraft pressurized fuselage panels. These evidences 
are also supported by an in-house probabilistic fatigue crack initiation analysis using S-N data 
from good quality riveted lap joints for the in-service geometrical configuration analysed. For 
such reasons, the MSD assessment presented in this work was performed with open hole quality 
S-N fatigue crack initiation data. The results indicated that the mean cumulative probabilities 
for fatigue crack initiation, crack detection and failure were rationally conservative, with 
differences in the order of 20 %, when compared to the corresponding distributions for the in-
service findings. 
 

1. INTRODUCTION 
Large passenger aircraft when kept in service for an extended period of time suffer from the 

development of a range of damage processes associated with ageing aircraft. These can take the 

form of corrosion, together with various forms of fatigue failure. Multiple Site Damage (MSD) 

is one of the major threats to airworthiness of such ageing aircraft. MSD is the simultaneous 

development of fatigue cracks at an array of similar structural details. MSD has been most 
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apparent in fuselage lap joint structures, and can result in unexpected catastrophic failure of 

aircraft, as it is difficult to detect. Recent recommendations by regulators to avoid this MSD 

threat [1] stipulate an Inspection Starting Point (ISP) and a Structural Modification Point (SMP) 

in the service life of aircraft. These points can be defined in terms of MSD analysis results, test 

results and/or by service experience. The intention is that the aircraft shall not be operated while 

there is a significant probability that MSD is present. Capability to accurately calculate service 

life to MSD onset becomes of considerable importance. 

Previous workers have approached this problem by considering the probabilistic nature of   

MSD occurrence, and have employed Monte Carlo techniques to simulate the stochastic nature 

of fatigue crack initiation at fastener holes and/or subsequent crack propagation, and therefore 

calculate the distribution of lives to MSD onset, link-up and ultimate failure.  

The crack initiation stage is commonly addressed by applying Monte Carlo simulation to 

lognormal or Weibull distributions of lives to achieve a specified crack size ao [1]. The 

following crack propagation stage is simulated either deterministically or probabilistically. 

There are particular difficulties in calculation of stress intensities for crack growth in MSD 

crack configurations because the β correction term will change for every different crack 

configuration simulated. Therefore the technique used for stress intensity calculation must be 

accurate and economical of computer time if it is to be used in a repeated simulation such as the 

Monte Carlo. In previous work, finite elements [2], alternating finite elements [3], boundary 

elements [4], dual boundary elements [5] and compounding method [6] have all been used to 

calculate stress intensities of MSD cracks.     

Over the past 15 years, there have been several Monte Carlo simulations of the MSD life 

calculation problem. These have differed greatly in their built-in assumptions, approximations 

and their calculation techniques. In consequence the predicted life distributions have also varied 

from simulation to simulation, as has the level of agreement with experimental data. The Dual 

Boundary Element (DBE) technique for calculation of stress intensities in MSD situations has 

advantages in accuracy over other numerical techniques [7]. Previous MSD simulations using 

DBE have used deterministic crack growth together with open hole geometries in their analysis 

[5]. In this work the DBE method has been applied to a row of pin loaded holes to perform 

probabilistic crack growth simulation of MSD using the Monte Carlo approach.  
 

2. A METHODOLOGY FOR MULTIPLE SITE DAMAGE ASSESSMENT 

Details of the MSD assessment model employed in this work is presented in the next sections. 

The modelling procedures are separated into different stages: fatigue crack initiation, 

deterministic crack propagation and probabilistic crack propagation. 
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2.1. Fatigue Crack Initiation 

To represent the fatigue crack initiation life ‘ 0N ’, a lognormal distribution of lives to achieve a 

crack size of ‘a0’ is employed. Considering the external rows of a lap joint, it is assumed that 

each pin-loaded hole has two fatigue critical locations (FCL) at 3 and 9 o’clock positions of the 

hole border. For each FCL, the normal distribution ‘ )log( 0N ’ is defined by the mean S-N fatigue 

life ‘ μ ’, the standard deviation ‘σ ’ and the standard normal distribution ‘α ’ given by, 

     σαμ .)log( 0 +=N                                                                                                                  (1) 

When a random value of ‘α ’ is generated by Monte Carlo simulation, one initial damage 

scenario is created by attributing each FCL a different initial fatigue life given by equation 1.   
 

2.2. Deterministic Crack Propagation 

The DBEM formulation utilized here for stress intensity calculation was developed by Salgado 

[7, 8], and it has been incorporated in the DTD code [9] for crack growth life calculation used in 

this work. Crack tips emanating from pin loaded fastener holes are subjected to mixed mode 

stress fields, and the DBE program calculates both KI and KII components. A mixed mode stress 

intensity range ΔKeff was calculated using the expression [10] 

     22 2 IIIeff KKK Δ+Δ=Δ                                                                                                            (2) 

The Paris equation is used to calculate the crack growth rate ( dNda ), given as a function of the 

effective stress intensity factor (
effKΔ ), 

     n
effKC

dN
da )(Δ=                                                                                                                      (3) 

Material constants C and n values are obtained from Salgado [9]. Crack growth lives are then 

calculated in the usual way using equation 3, with a starting crack length ao in the macro crack 

size range. As cracks grow, the Swift [11] criterion is used to define link-up. After link-up with 

an uncracked hole, continuing damage [12] is assumed (an initiated crack of length 0.127 mm is 

assumed to start from the opposite hole border to where link-up took place). Final failure occurs 

when residual strength becomes inadequate on either material fracture toughness or net-section 

yield criteria. 

2.3. Probabilistic Crack Propagation 

Possibly the first work to demonstrate the probabilistic nature of crack growth was presented by 

Virkler [13] by means of sixty eight replicate constant amplitude crack propagation tests 

conducted on 2024-T3 aluminium alloy (Figure 1). Virkler verified that fatigue crack 

propagation process presents a scatter, and so does the crack growth rate (Figure 2). 
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From the results presented in Figure 1, Virkler observed that if a ‘test started out slow it tended 

to remain slow for most of the test’. From Figure 1, it can also be stated the opposite situation: 

tests that start out fast tend to remain fast. 

In order to represent the probabilistic nature of fatigue crack growth in this work, the Xing [14] 

formulation will be used to couple Monte Carlo simulation to the deterministic numerical 

technique for crack propagation presented in section 2.2. Considering the modified Paris 

equation 3, reproduced here as follows,  

( )neffKC
dN
da

Δ=                                                                                                   (4) 

Taking the logarithm on both sides of equation 4 it follows, 

( )effKnC
dN
da

Δ+= logloglog                                                                                        (5) 

To represent the stochastic nature of crack propagation, a normally distributed variable 

),0(~ 2
zNZ σ  is added to the logarithm of the fatigue crack growth equation 5, 

( ) ZKnC
dN
da

eff +Δ+= logloglog                                                                                   (6) 

Considering the properties of the standard normal distribution [ )1,0(N ], the probability that a 

measurement will fall in a range pZZ ≤  is given by pZZP p =≤ )( , and pZ  can be written 

as, 

zppZ σα=                                                                                                                   (7) 

When the probability ‘ p ’ is given, pα  can be obtained from the standard normal distribution. 

For example, when =p 50%, pα = 0, leading 0=pZ  in equation 7, and equation 6 becomes 

equation 5 which becomes equation 4 which is the deterministic average fatigue crack growth 

rate. The probabilistic crack growth rate, represented by equation 6, can be simplified if the 

value of ‘n’ is assumed as a mean constant value and the probabilistic character of crack growth 

is attributed to ‘C’, assumed as a lognormal distribution. The assumption of considering ‘n’ 

constant and varying ‘C’ as a lognormal distribution is enough to adequately describe the crack 

propagation rate and its statistical feature [15, 16]; and it has been widely employed by the 

MSD models from the literature when probabilistic crack growth is considered. Therefore, 

equations 6 and 7 can be re-arranged as, 

( )effp
p

KnC
dN
da

Δ+=⎟
⎠
⎞

⎜
⎝
⎛ logloglog                                                                             (8) 
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Where zpp CC σα+= loglog  is now a random variable normally distributed with mean 

Clog  and variance 2
zσ . Equation 8 can be re-written as, 

n
eff

n
effzp KCKC

dN
da )())](..10exp(ln[ Δ=Δ= σα                                                     (9) 

At the original work from Xing [14], equation 9 is derived from equation 4 as presented in this 

section, but taking the natural logarithm both sides from equation 4 which leads equation 9 to be 

written as, 

  n
eff

n
effzp KCKC

dN
da )())](.exp([ Δ=Δ= σα                                                            (10) 

The difference between equations 9 and 10 is because in the former the value of zσ  is given in 

log-scale and in the latter it is given in natural-log-scale. As values of zσ  are more commonly 

found in the literature in log-scale, in this work equation 9 is adopted for probabilistic crack 

growth analysis. 

For a given value of pα , the number of cycles fN to grow a crack from an initial crack size ‘a0’ 

up to a crack size ‘af’ is obtained from direct integration of equation 9, 

∫ Δ
=

fa

a
n

eff
f K

da
C

N
0

)(
1

                                                                                                      (11) 

Based on Virkler findings described in the beginning of this section, it is assumed in this work 

that each initial damage scenario generated by Monte Carlo simulation (section 2.1) has a 

unique pα  value in equation 11, i.e., in practice each damage scenario is assigned a random 

‘ C ’ value so that deterministic crack propagation can now be performed.  

The effect of considering ‘n’ constant and ‘C’ varying as a lognormal distribution is illustrated 

in Figure 3; where it can be seen that parallel crack growth rate curves are created to describe 

the scatter from Figure 2. 
 

2.4. Methodology Comparison to Experimental Work (Riveted Flat Panel) 

The lap joint geometry which is analysed is shown in Figure 4 and consists of 3 rows of 9 pin 

loaded holes.  It is subjected to a uniform remote alternating tensile stress with maximum stress 

of 100 MPa and R = 0.1. The sheet is 1.6 mm thick and is of clad 2024 T3. The rivet diameter 

(φ ) is 4 mm, and the pitch distance (p), the inter row spacing (s) and the edge distance (e) are all 

equal to 20 mm. Material properties are UTSσ = 448 MPa, YSσ = 331 MPa and CK1 = 32 MPa 

m1/2. Material constants for deterministic crack growth C and n values (equation 3) are C = 
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6.09E-11 and n = 2.6, obtained from Salgado [9]; and 043.0[log] =zσ  has been assumed, 

following Proppe [3], for probabilistic crack growth (equation 11). It has to be highlighted that 

the value of CK1  from the DTD code (32 MPa m1/2) for Al2024-T3 is set automatically for 

plane strain condition showing that the author [9] of the code chose a conservative approach 

when calculating critical crack size values via the fracture toughness failure criterion. The S-N 

fatigue curve properties used for the riveted holes is from Santgerma [2], and the values for 

‘ [log]μ ’ and ‘ [log]σ ’ are, respectively, 5.6370 and 0.20 for an initial crack size ao of 1.5 mm. 

For each damage scenario generated by Monte Carlo simulations, the crack growth life is, 

firstly, calculated in a deterministic way, as described in section 2.2, and, secondly, the 

probabilistic treatment, as described in section 2.3, is applied. 

The results of 400 Monte Carlo simulations are presented in Figure 5, together with 6 points 

from the test results of Foulquier [17]. The position of the limits of the confidence regions [18] 

have been corrected according to Arnold [19], so that a finite number of random simulations can 

produce the same confidence region size as an infinite number of simulations. 

As found in other published simulations, for instance Santgerma [2], Proppe [3] and Kebir [5], 

Figure 5 shows that lives to failure are dominated by crack initiation, with initiation life 

occupying between 3-15 times the total propagation life. Total initiation life varies from 5.5x104 

to 3.7x105 cycles, whereas propagation lives are between 1.5x104 to 7x104. Five of the six 

experimental points fall on or outside the 95% probability boundary line for the simulations, 

suggesting that real failure processes have considerably greater variability than the simulations. 

The mean propagation life of the experimental data is approximately the same as that of the 

simulations, but the spread of the 6 experimental propagation lives is as large as that of the 

entire 400 simulations. The spread of predicted lives encloses the range of scatter of the 

experimental lives for both initiation and propagation stages.  However, there are only 6 

experimental points; even for the 99.7 % confidence region there is one experimental point 

standing outside. It is likely that were 400 experiments to be performed, the observed scatter 

could be significantly greater than the current data set.  

In order to derive [1] the Inspection Starting Point (ISP) and the Structural Modification Point 

(SMP), used to establish the monitoring period, the mean fatigue life to failure (Nf,mean) must 

be determined. From Figure 5, the value of Nf,mean is given by Nf,mean = Ninitiation,mean + 

Npropagation,mean = 222,000 cycles.  The ISP and the SMP are calculated by dividing 

Nf,mean by typical factors of 3 and 2 respectively [1]. For these numbers and for the joint 

analysed in this work (Figure 4), the ISP and the SMP values are respectively, 74,000 cycles 

and 111,000 cycles. Repeat inspection intervals (IWFD) are established based on time from a 
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detectable crack size initiation up to the SMP, divided by a factor (FWFD). Considering the 

chosen initial crack size value of 1.5 mm as the detectable crack length, the total Inspection 

Period (IP) is defined as the cycles between the ISP and the SMP, i.e., equal to 37,000 cycles. 

From the 99.7 % confidence limits of Figure 5, it can be noticed that the smallest time to crack 

propagation (TTCPMIN) up to failure is 12,000 cycles. According to traditional damage tolerance 

analysis, if TTCPMIN is divided by a safety factor of 2 it will lead to an inspection period of 

6,000 cycles. Dividing the IP by 6,000cycles, a factor FWFD = 6.2 is obtained and, consequently, 

a factor of 7 is more likely to be employed. Therefore, the repeat inspection intervals can be 

defined as IWFD = IP/FWFD = 5,285 cycles which can be approximated to IWFD = 5,200 cycles. 

However the approximations and assumptions inherent in the current model, some of which are 

discussed above, the results suggest that we cannot yet regard the factors used in the derivations 

as fixed. It may be that distributions of real test data gathered on large numbers of aircraft would 

have distributions for which use of the above factors would not result in an acceptably low 

probability of occurrence of MSD. 
 

3. MSD Assessment Comparison to Teardown Inspections from In-Service Data 

In section 3.2, an MSD assessment analysis is presented to compare its output to teardown data 

obtained from in-service fuselage panels of aging aircraft published by Steadman [20]. The lap 

joint geometrical configuration analysed is presented in Figure 6 and it is from a Boeing 727 

aircraft [20]. The fuselage skin is of aluminium 2024-T3, the outer and inner skins thicknesses 

are, respectively, 1.6 mm and 1.0 mm; and they are connected by 3 rows of NAS1097D6 

aluminium rivets of diameter 4.76 mm, row spacing of 22.9 mm and pitch distance between 

rivets of 28.6 mm. The frame spacing is of 508 mm and 17 rivet holes are present within one 

frame bay, excluding the ones from the frames. The lap joint configuration is subjected to a 

nominal hoop stress of 103.4 MPa at fuselage skin mid-frame bay due to pressurization. 
 

3.1. Why open hole / loose fit loaded hole S-N data for fatigue crack initiation? 

To analyse the fuselage panel configuration presented in Figure 6, it was assumed an open-hole 

quality S-N fatigue data for fatigue crack initiation. As lap joint configurations for real fuselage 

panels are riveted, this assumption must be explained. 

From some MSD models presented in the literature, for example Schmidt [21], it is a common 

practice to use flat straps of riveted specimens, manufactured using aircraft standards (material, 

rivets and assembly techniques), to derive S-N fatigue data for MSD assessment comparison to 

fatigue tests of flat fuselage panel sections subjected to multiple cracking. Of course, these 

comparisons are valid to demonstrate the effectiveness of the methodologies since the models 

output represents what is intended for comparison. A direct consequence of this issue is that 
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MSD models can be describing the MSD behaviour of flat sections of riveted panels in 

laboratory environment, but not real aircraft structures [22]. 

Real aircraft fuselage lap joints are subjected to bi-axial loads such as circumferential and axial 

stresses caused by pressurization, bending and torsion caused by aerodynamic loads, inertia 

loads and landing, not to mention environmental issues such as corrosion. In his work, Okada 

[23] compares the fatigue lives for initiation of 1 mm cracks from flat panel specimens and one-

third scale-models of a B-737 fuselage structure subjected to pressurization and bending loads. 

If the fatigue life for crack initiation obtained from the scale-model specimens is divided by the 

corresponding value from flat panel specimens, a mean coefficient of 0.42 is obtained. This 

coefficient means that the fatigue life for crack initiation is reduced by 58 % when curved panel 

test specimens are considered. It has to be highlighted that the mean coefficient of 0.42, derived 

by the author from Okada [23] experimental work, was calculated based on two flat lap joint 

and two scale-model fatigue test specimens; which cannot represent the statistical dispersion 

inherent to a wider number of fatigue tests. But, certainly, Okada [23] experiments give a clear 

indication that there are significant differences from both fatigue test specimens as a source for 

input data for Monte Carlo simulations.  

Another indication that pristine and good quality riveted flat lap joint test specimens are 

possibly not indicated to generate S-N fatigue data for MSD assessment of real fuselage panels 

comes from Wanhill [24], Bakuckas [25] and Steadman [20]. Wanhill [24] presents the service 

histories of pressurized fuselage lap splices from five different in-service aircraft types where 

MSD cracking was detected. By the time MSD was identified, the number of flights varied from 

34,470 to 75,158. From Bakuckas [25] it is also reported MSD occurrence, detected by current 

methods for field inspections, from a retired Boeing 727 containing 59,497 flight cycles. 

Steadman [20] findings were that MSD initiation was reported even before 20 % (12,000 flight 

cycles) of the Design Service Goal (DSG). These numbers are showing that MSD occurrence, 

from in-service or retired fuselage panels, happens in a range of 1E+4 to 1E+5 flight cycles; 

while fatigue lives to crack initiation from S-N tests of pristine and good quality strap joints are 

commonly reported to be higher than 1E+5 cycles at typical loads around 100 MPa and R ratios 

ranging from 0 to 0.1 [26]. 

Another complicating factor, when assessing real fuselage panels for MSD behaviour via 

fatigue data from flat lap joint specimens, is corrosion. Corrosion occurrence has been reported 

from retired and in-service aircraft fuselage joints [27]. Concerning S-N fatigue data itself, a 

comparison between fatigue tests from pristine and corroded flat lap joint samples showed that 

corrosion can easily degrade the fatigue life for visible crack initiation by 40 % [28]; and, 



 

9 

therefore, pristine test specimens seem not to be adequate to approach real aircraft fuselage 

panels if corrosion is considered. 

For the arguments presented in the previous paragraphs, the applicability of fatigue crack 

initiation data obtained from pristine and good quality riveted flat lap joint test specimens for 

MSD assessment of real aircraft fuselage panels is questioned by the author.  

From the literature, a positive indication that flat riveted lap joint test specimens could be used 

for comparison to full-scale fatigue tests (which mostly resembles in-service fuselage panels) 

comes from Horst [29]. From his MSD simulations, Horst could predict a full-scale fatigue test 

result at the border of his 99.7 % confidence region where the smallest fatigue lives were 

obtained from the simulations. It has to be highlighted that Horst employed a poor quality deep 

countersunk riveted joint to force early fatigue crack initiation because, according to his 

arguments, good quality riveted samples would be inadequate for comparison purposes with the 

full-scale test due to the high fatigue lives obtained from those samples. The result from the full-

scale fatigue test [29] presented a detectable crack with fatigue life around 80,000 pressurization 

cycles and, as observed from in-service fuselage panels, a fatigue life in the range of 1E+4 to 

1E+5 cycles.  

As an exercise, and considering the lap joint configuration from Figure 6, S-N fatigue data 

obtained from good quality riveted flat lap joint test specimens can be found in Swift [30]; and 

calculating the mean time to crack initiation it is obtained, approximately, 1E+6 cycles. If a 

typical standard deviation value of 0.15 in log (cycles) is assumed for fatigue crack initiation of 

Al 2024-T3 riveted panels [31], the results from Monte Carlo simulations will give a mean time 

to crack initiation of the lead crack equal to 536,250 cycles; with the smallest and biggest lives 

equal to, respectively, 266,088 and 835,761 cycles. From this exercise, it is quite clear that 

MSD assessment of real aircraft fuselage panels, when performed with input S-N fatigue life 

data from good quality riveted flat lap joint samples, is destined to a terrible non-conservatism. 

This statement is easily verified if lives to MSD occurrence from aging aircraft pressurized 

fuselage panels (34,470 to 75,158 cycles [24]; 59,497 cycles [25]; 12,000 cycles [20]) are 

compared to the fatigue crack initiation lives generated by the Monte Carlo simulations from the 

present exercise (266,088 to 835,761 cycles). 

Therefore, for the reasons presented so far, the author decided to assume open hole quality S-N 

fatigue data input for the fatigue crack initiation part of the MSD assessment model.  
 

3.2. MSD Assessment Comparison to Teardown Inspections from In-Service Data 

According to Steadman [20], MSD was detected at the inner fuselage skin at the rivet lower row 

(Figure 6) and cracks nucleated basically at holes from the centre of the bay. The DBE model 
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idealized to analyse the inner skin of the lap joint configuration from Figure 6 is presented in 

Figure 7.  

The DBE model from Figure 7 consists of one rectangular sheet of aluminium 2024-T3; 1000 

mm long and 314.4 mm wide; discretized by 182 boundary elements and 364 nodes; with a 

central row of 11 pin-loaded holes; lateral constraint (Dx) in the x direction to simulate a wider 

joint, top and bottom constraint (Dx) in the x direction and lateral constraint (Dy) in the y 

direction where no displacements are expected due to symmetry; gross stress (Ty) applied in the 

top of the model and bypass stress (Ty) applied in the bottom of the model. The hole diameter, 

pitch distance between holes and sheet thickness are the same as illustrated in Figure 6 for the 

inner skin.  

The bypass stress ( bpσ = 66.7 MPa) and the bearing stress ( brσ = 220.2 MPa) for the DBE 

model from Figure 7 was obtained considering a gross stress grossσ  = 103.4 MPa applied to a 

strap lap joint subjected to load equilibrium, but with width of 28.6 mm (one pitch distance) and 

all remaining dimensions as from Figure 6 inner skin. All the 11 holes from Figure 7 have the 

same pin-loading (uniform pin-loading) and they represent the inner skin lower row of rivet 

holes present in the central part of the fuselage bay from Figure 6. 

Figure 8 presents S-N fatigue data [30] for cycles to failure of a loose fit/open hole strap 

specimens of aluminium 2024-T3, which is adopted in this section for the fatigue crack 

initiation part of the MSD assessment model. The material and dimensions of the strap 

specimen used to generate the S-N data from Figure 8 are the same as for the inner skin from 

Figure 6, but the specimen width is of 31.8 mm.  

As it can be seen, Figure 8 presents the S-N data as a function of the gross stress ( grossσ ) and 

the stress ratio grossbr σσ / . For the calculated loading conditions used in this section grossσ  = 

103.4 MPa (15 ksi) and grossbr σσ / = 2.13, the fatigue life to failure of the strap specimen is 

equal to 42,000 cycles. The value of 42,000 cycles to failure has to be normalized to achieve a 

fatigue life corresponding to an initial crack size to serve as input variable for the crack 

initiation part of the MSD assessment model. In his work Steadman [20] presents a cumulative 

distribution function for fatigue crack initiation corresponding to an initial crack size of 1.27 

mm (0.05 inches), which is adopted in this section.  

To normalize the 42,000 cycles to failure to a fatigue life corresponding to an initial crack size 

of 1.27 mm; a DBE strap lap joint model was built, but to represent the strap specimen 

configuration at the top right from Figure 8. The loading condition was a maximum tensile 

stress of 103.4 MPa and R = 0. The number of cycles to propagate an initial crack size of 1.27 
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mm up to failure from the DBE strap model was 6,300 cycles, which subtracted from 42,000 

cycles to failure gives a mean time to crack initiation of 35,700 cycles or 4.5527 in log (cycles). 

With the mean time to crack initiation defined, the corresponding standard deviation value has 

to be established. As from Figure 8 no information about scatter is provided, it is assumed a 

standard deviation of 0.15 (log-scale) to be a typical value for fatigue testing of aluminium alloy 

2024 components under constant amplitude loading [31]. 

Figure 9 presents cumulative probability distributions from the detailed results of teardown 

inspections on 24 fuselage bays calculated by Steadman [20]. The x-axis presents life in terms 

of percent of DSG (Design Service Goal), where 100 % DSG is equal to 60,000 flight cycles. 

The y-axis presents the cumulative probabilities from 0 to 1 (0 to 100 %). In the legends, 

‘Initiation’ is the cumulative distribution for initiation of fatigue cracks with a crack length of 

1.27 mm; ‘Detectable’ is the cumulative distribution to detect a crack length of 5.1 mm with 66 

% probability; and ‘Failure’ is the cumulative distribution for the link-up of adjacent MSD 

cracks. 

In this section failure is defined as the first crack link-up, i.e., crack propagation is performed 

considering an initial crack size of 1.27 mm up to the link-up of a crack with another crack to 

compare with the results from Figure 9. 

To check for crack propagation obtained with the DBE model from Figure 7; Figure 10 presents 

fleet crack growth data [32] for Boeing 737 and 727 aircraft together with ‘This work’ 

deterministic crack propagation data. From Figure 10, Jones [32] highlights one crack growth 

region between the horizontal lines that cross the 4 and 11 mm crack length axis. It can be seen 

that, within the region defined, the crack propagation time ranges from, approximately, 16,000 

to 45,000 flight cycles for several B-737 and B-727 aircraft. The crack growth data plotted as 

‘This work’ indicates a number of, approximately, 26,000 cycles to grow a single crack from 4 

up to 11 mm; which demonstrates that the number of cycles obtained for ‘This work’ is within 

the range of the data measured from real aircraft fuselage panels. 

The result of Monte Carlo simulations regarding 11 central holes for the idealized inner skin 

lower row of rivets from Figure 6 is presented in Figure 11 It can be seen that lives to failure 

(initiation + propagation lives) are dominated by crack propagation, with mean initiation life 

equal to 18,655 cycles (31.1 % DSG) and the mean propagation life equal to 23,890 cycles 

(39.8 % DSG), i.e., the propagation phase represents 56.2 % of the mean failure process (18,655 

+ 23,890 cycles = 42,545 cycles = 70.9 % DSG). Total initiation life varies from 9,536 to 

28,780 cycles, whereas propagation lives are between 13,614 to 43,007 cycles. 

Figure 12 shows the cumulative probability distribution comparison for crack initiation from the 

results presented in Figures 11 (Monte Carlo simulations) and 9 (teardown inspection data). The 
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x-axis shows life as a function of percentage of DSG and the y-axis the corresponding 

cumulative probabilities from 0 to 1 (0 to 100%). In the legends, ‘Initiation’ refers to the 

teardown data (Figure 9) while ‘Initiation MC’ to the Monte Carlo simulations (Figure 11).  

From Figure 12, the 0.5 cumulative probabilities for initiation of fatigue cracks from the 

teardown data and from Monte Carlo simulations are, respectively, 36.9 % DSG (22,140 cycles) 

and 31.1 % DSG (18,665 cycles); with the Monte Carlo simulation results being 15.7 % smaller 

than the teardown inspection results. 

Figure 13 shows the cumulative probability distribution comparison for crack detection. The 

results for Monte Carlo simulation from Figure 13 were obtained from the results presented in 

Figure 12 (initiation of fatigue cracks) but adding the number of cycles to grow the 

corresponding lead cracks probabilistically from 1.27 mm to 5.1 mm (detectable crack length 

considered in Figure 9).  

From Figure 13, the x-axis shows life as a function of percentage of DSG and the y-axis the 

corresponding cumulative probabilities from 0 to 1 (0 to 100%). In the legends, ‘Detectable’ 

refers to the teardown data (Figure 9) while ‘Detectable MC’ to the Monte Carlo simulation 

results. 

From Figure 13, the 0.5 cumulative probabilities for detection of fatigue cracks from the 

teardown data and from Monte Carlo simulations are, respectively, 68 % DSG (40,800 cycles) 

and 52.3 % DSG (31,380 cycles); with the Monte Carlo simulation results being 23.1 % smaller 

than the teardown inspection results. 

Figure 14 shows the cumulative probability distribution comparison for failure, defined as first 

crack link-up, from the results presented in Figure 11 (Monte Carlo simulation) and Figure 9 

(teardown inspection data). The x-axis shows life as a function of percentage of DSG and the y-

axis the corresponding cumulative probabilities from 0 to 1 (0 to 100%). In the legends, 

‘Failure’ refers to the teardown data (Figure 9) while ‘Failure MC’ to the Monte Carlo 

simulations (Figure 11).  

From Figure 14, the 0.5 cumulative probabilities for failure from the teardown data and from 

Monte Carlo simulations are, respectively, 91.5 % DSG (54,900 cycles) and 70.9 % DSG 

(42,540 cycles); with the Monte Carlo simulation results being 22.5 % smaller than the 

teardown inspection results. With the mean number of cycles to failure established by Monte 

Carlo simulation, the ISP and the SMP are calculated as, respectively, 14,180 cycles (23.6 % 

DSG) and 23,270 cycles (35.5 % DSG); considering, respectively, factors 3 and 2 as 

recommended in reference [1]. The ISP and the SMP values for the Monte Carlo simulations 

from Figure 11 are 22.5 % smaller than the same values from the teardown data. 
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From Figure 12, it can be seen that the cumulative probabilities for fatigue crack initiation of the 

lead crack from the simulations is surprisingly close to the one from in-service data, more 

noticeably for low probabilities of occurrence. It can also be noted that the inclination of the 

distribution from the simulations is smaller than the one from in-service data, indicating that in 

reality a bigger standard deviation value should be used. If the mean times to crack initiation 

from the distributions are compared, then it can be seen that the value from the simulations is 

15.7 % smaller than the one from in-service data. This result demonstrates that the use of open 

hole S-N data for fatigue crack initiation is rationally conservative, and for the case of the lap 

joint from Figure 6 can be applied. 

From Figure 13, it can be seen that the differences between the cumulative distributions for 

detectable cracks are enlarged when compared to the results from Figure 12. Considering the 

mean time for detectable cracks (50 % probability), the Monte Carlo simulation result is 23.1 % 

smaller than the in-service ones. It has to be highlighted that the Monte Carlo simulation results 

from Figure 13 were obtained from the results presented in Figure 12 (initiation of fatigue 

cracks) but adding the number of cycles to grow the corresponding lead cracks probabilistically 

from 1.27 mm to 5.1 mm (detectable crack length considered by Steadman [20]). This 

procedure needs some extra refinement, since the scatter for the detectable crack distribution 

was simply attributed to the scatter inherent to the crack growth process but the crack detection 

itself presents a scatter inherent to the inspection process; and if this scatter is added to the one 

from the simulations the inclination of the present cumulative distribution is expected to 

increase. If only the crack propagation process is considered, then the enlargement of distance 

between both distributions from Figure 13, when compared to Figure 12, can be attributed to 

conservatism in the whole crack propagation calculations performed with the model from 

Figure 7.  

From Figure 14 it can be seen that the cumulative probabilities of failure from the simulations 

and in-service data are enlarged when compared to Figure 12. The mean time for failure from 

the simulations is 22.5 % smaller than the in-service one. As for the case of Figure 13, this 

difference can also be attributed to conservatism in the whole crack propagation calculations 

performed with the model from Figure 7, but other reasons apply as well. From Figure 10, it can 

be seen that, although the crack propagation analysis from the simulations are comparable to in-

service data [32], crack propagation times ranged from approximately 16,000 to 45,000 flight 

cycles for Boeing 727 and 737 aircraft; while the same value given by the model from Figure 10 

was 26,000 cycles. These differences seem not to be connected, so lonely, to the scatter inherent 

to the crack growth process. It is possible that ‘flight cycles’ from Figure 10 do not necessarily 

mean full pressurization cycles, and this issue depends on the service history of each aircraft.  
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From the point of view of the AAWG recommendations [1], the basic purpose of MSD models 

is to establish both the ISP and SMP points, from the 50 % cumulative probabilities of failure 

(Figure 14), to define a monitoring period in order to prevent MSD threat. If the ISP and SMP 

points are considered, the calculated values from the analysis are, respectively, 14,180 cycles 

(23.6 % DSG) and 23,270 cycles (35.5 % DSG); while the same values calculated from the in-

service data are, respectively, 18,300 cycles (33.3 % DSG) and 27,480 cycles (45.8 % DSG). 

These results indicate that the ISP and the SMP points established from the simulations are 22.5 

% smaller than the ones from in-service data. From an engineering point of view, this difference 

is not small; but it is far from being unacceptably conservative considering that real MSD 

occurrence from aging aircraft pressurized fuselage panels is being assessed.  

Returning to the points of ISP and SMP, established from both the in-service data and the 

simulations, these points define the monitoring period which is ‘the period of time when special 

inspections of the fleet are initiated due to an increased risk of MSD’ [1]; and the monitoring 

period ends when the SMP is reached. The SMP point, also called the ‘point of WFD’ 

(widespread fatigue damage) [1], is the point where ‘no airplane may be operated without 

modification or part replacement’ [1] or ‘the point beyond which the airplane may not be 

operated without further evaluation’ [1]; and at the SMP point, failure due to MSD should not 

represent a threat to structural safety due to high probabilities of occurrence. The reason for 

reminding the monitoring period and the SMP concepts is to verify whether these parameters 

(established by the simulations) are well suited to its definitions or not when compared to the in-

service data; and to perform this verification the results from Figure 14 are presented in Figure 

15. 

From Figure 15, it can be seen that the SMP from the simulations (35.5 % DSG) is 

conservatively established compared to the in-service data (45.8 % DSG) demonstrating a 

cumulative probability of failure smaller than 1E-4, which means that MSD threat is remote to 

structural safety and the SMP point from the simulations is well established. This conservatism 

can also be observed when the SMP is established with the in-service data itself (45.8 % DSG) 

because the cumulative probabilities of failure are also smaller than 1E-4. If the SMP point 

established from the simulations (35.5 % DSG) is checked for MSD initiation behaviour using 

the in-service distribution presented in Figure 12, it can be seen that approximately 45 % of the 

fleet would have initiated MSD cracks! Although this probability is high, the cumulative 

probability of MSD detection from Figure 13 is still small; which means that cracks would not 

have grown far enough to represent a real threat to the residual strength of the structure. It has to 

be noted that in case of no detectable MSD cracks at the point of SMP; airworthiness regulators 

would possibly not recommend repair or structural modifications, but the extension of the point 



 

15 

of SMP (and, consequently, the monitoring period) as a result of further evaluation of the 

structure. As the SMP given from the simulations fulfils its purpose, the same conclusion 

applies to the monitoring period since very low cumulative probabilities of MSD failure are 

involved from the point of ISP to the point of SMP. 
 

4. CONCLUSIONS 

1. The MSD model provided good agreement with published experimental work on fatigue of 

lap splice joints where both crack initiation and propagation stages from the simulations 

were able to incorporate the experimental data scatter and the mean lives. 

2. The spread of the experimental data at both initiation and propagation lives was as large as 

that of the entire simulations; and this behaviour is also verified from other published work. 

3. Evidences from in-service MSD detection strongly indicated that S-N input data obtained 

from good quality riveted flat lap joint test specimens would not be appropriate for MSD 

assessment of real aircraft pressurized fuselage panels. Those evidences were also supported 

by published MSD assessment of a full-scale fatigue test and by a probabilistic fatigue crack 

initiation analysis using S-N data from good quality riveted lap joints corresponding to the 

in-service geometrical configuration analysed. 

4. The MSD assessment presented was performed with an open hole quality S-N data, and the 

cumulative probabilities for fatigue crack initiation, crack detection and failure were 

rationally conservative compared to in-service findings for the corresponding distributions. 

The differences were in the order of 20%, with the smallest differences belonging to the 

fatigue crack initiation part of the simulations. 

5. In-service data indicated that both the ISP and the SMP were well established from the 

simulations, and failure due to MSD occurrence was not a threat for structural safety during 

the monitoring period. 

5. FUTURE WORK 

For the in-service data comparison discussed in section 3.2, strong evidences were presented 

indicating that good quality riveted lap joint test specimens were not able to provide S-N input 

data for MSD assessment of real aircraft fuselage panels. The lack of approach from the 

literature on such an important issue is surprising. It seems that many authors do believe that, as 

far as the lap joints are manufactured with the same material and construction techniques 

employed in the production line, good quality riveted joints can provide S-N data to predict in-

service behaviour. What this work showed was that open hole S-N fatigue data demonstrated to 

be reasonably suitable for MSD analysis of in-service structures. The main question that has to 

be answered from future workers is whether open hole S-N data is always suitable or not for 
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different geometrical configurations than the one that has been analysed. It may be that for other 

fuselage panel configurations, open hole quality S-N data demonstrates inadequacy and, 

possibly, good quality riveted lap joint S-N data should be more appropriate. This issue has only 

been started with this work, and further MSD assessments for different in-service aircraft types 

are needed. 

FIGURES 
 

 
Figure 1: Trajectories of the stochastic crack growth from Virkler [13]. 

 

 
Figure 2: Crack propagation rate dispersion from Virkler [13]. 
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Figure 3: Various crack propagation rate curves for constant ‘n’ and variable ‘C’. 

 

 
 

Figure 4: Lap joint configuration.  
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Monte Carlo Simulation
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Figure 5: Monte Carlo simulation results and its confidence regions. 
 
 
 

 

 

 

 

 

 

 

 
 

Figure 6: Fuselage lap joint configuration for Boeing 727 aircraft [20]. 
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Figure 7: DBE model for the lap joint inner skin lower row from Figure 6. 

 
Figure 8: S-N fatigue data for inner skin lower rivet hole from Figure 6 [30]. 
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Cumulative probability distribution for 24 fuselage bays
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Figure 9: Cumulative probability distributions from teardown inspections [20]. 

 

 
Figure 10: Fleet crack growth data for B-737 and B-727 aircraft [32] comparison to 

deterministic crack growth from this work. 
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Monte Carlo Simulation
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Figure 11: Monte Carlo simulation for teardown inspection comparison. 

 

Monte Carlo Simulation x Teardown Inspection Data
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Figure 12: Cumulative probability distribution for initiation of fatigue cracks comparison to 

teardown inspection data. 
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Monte Carlo Simulation x Teardown Data
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Figure 13: Cumulative probability distribution for detection of fatigue cracks comparison to 

teardown inspection data. 

 

Monte Carlo Simulation x Teardown Inspection
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Figure 14: Cumulative probability distribution for failure comparison to teardown inspection 

data. 
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Monte Carlo Simulation x Teardown Inspection
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Figure 15: Cumulative probability distribution of failure from Figure 14. 
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