
Development of a Probabilistic Fatigue 
Life Model using AFGROW

William A. Grell and Peter J. Laz
Department of Engineering

University of Denver

ASIP Conference 2006, San Antonio, TX



Motivation
• Increasing emphasis on reliable design of aircraft 

components 
• Design for six sigma
• Understanding of performance at a specific risk level (e.g. p = 0.01)

• AFGROW has become a commonly used life prediction 
software  (Harter, IJOF, 1999)
• Applied to structures under spectrum loading (Barter et al., ASIP 

2005, Huang et al., TAFM 2005, Zhang et al., IJOF 2003)
and fretting fatigue (Giummarra, Trib., 2006)

• Nessus and Unipass are commercially available probabilistic 
software
• Can probabilistic software be linked to AFGROW to create a design 

tool for predicting life of aircraft components?



Objective

• To develop a probabilistic interface for 
AFGROW using existing probabilistic 
software

• To demonstrate that the probabilistic 
interface can accurately and efficiently
predict results
• Modeling and comparison of experimental 

data



Outline

• Probabilistic interface for AFGROW

• Verification studies
• CT specimen with variable material properties
• SENT specimen with variable material properties and 

initial crack size

• Considerations
• Various probabilistic methods
• Sensitivity analysis highlights most important 

parameters
• Comparison of Nessus and Unipass



Probabilistic Analysis - Overview

• Many variables affecting fatigue are not constant
• Material properties have scatter

• Crack growth rate relation (da/dN versus ΔK)
• Fracture toughness (KIC) and yield strength (SY)

• Dimensions have tolerances
• Loading spectrums can vary depending on usage and 

conditions

General approach
• Represent variables as distributions in order to 

predict a distribution of performance
• Variable interaction effects are included
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AFGROW

• AFGROW life prediction software
• Version 4.10.13 used in this study

• Features
• Efficient weight function based K solutions
• Crack closure models
• Repair and inspection

• COM interface allows parametric study of design 
parameters using Excel
• Utilized in probabilistic interface

AFGROW



Reliability Methods

• Monte Carlo simulation
• Randomly generates parameter values from 

their distributions
• Evaluates failure criteria, repeat for N trials

• Advantage: simple, robust, guaranteed to 
converge

• Disadvantage: computationally intensive



Reliability Methods
• Most probable point (MPP) methods 

(Haldar & Mahadevan, Wiley, 2000)
• Optimization to find MPP 
• Distance to MPP relates to probability

SwRI, 2001



Reliability Methods
• Mean value (MV): approximates MPP by perturbing variables 

near the mean
• Number of trials = 1 + (number of variables)

• Advanced mean value (AMV): MV + additional evaluation at 
the MPP
• Number of trials = 1 + (number of variables) + (number of p levels)

• FORM: various algorithms based on first order approximation 
of the performance function
• Number of trials dependent on convergence

• Advantage: efficient, sensitivity factors
• Disadvantage: approximate, complex to implement, but 

available in probabilistic software packages



Model Verification #1
CT specimen



Verification of Model

• Data available for 30 constant 
amplitude fatigue tests on CT 
specimens of Al 2024-T351 
(Wu & Ni, Prob Eng Mech, 2003)

• Probabilistic model
• Identical geometry
• Variability in fatigue crack growth rates, fracture 

toughness and yield strength
• Yield strength affects crack closure
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AFGROW Model

• CT geometry based on ASTM Standard E647-93
• W = 50 mm, B = 12 mm
• Initial crack size = 15 mm
• Pmax = 4.5 kN, R = 0.2

• Modeled with FASTRAN II crack closure model

•

• C1, C2 from da/dN-ΔKeff curve
• Effective threshold ΔKo = 0.1 MPa-m1/2

• Failure based on exceeding fracture toughness
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Crack Growth Rate Relation
• Log-normal distribution for 

da/dN
• Mean based on piecewise 

curve (Newman et al., 
IJOF, 1999)

• Standard deviations from 
Wang (IJOF, 1999)

• da/dN curve moved from 
mean curve based on 
FCGR offset and standard 
deviation at each ΔKeff
value

• Accounts for specimen-to-
specimen variation
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Fracture Toughness
• Al 2024-T351 plate
• KIc: μ = 34 MPa-m1/2

σ = 5.6 MPa-m1/2

(MIL-HDBK-5J)

• Assumed normal 
distribution (White et al., IJOF, 
2005; Wang, Eng Fract Mech,
1995)
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Yield Strength
• Al 2024-T351 plate
• YS: 331 MPa (A-basis)

345 MPa (B-basis)
(MIL-HDBK-5J)

• A-basis: 99% of specimens 
with strength above this 
value

• B-basis: 90% of specimens 
with strength above this 
value

• Assumed log-normal 
distribution and computed 
shape (ζ) and scale (λ)
parameters
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• Experimental data 
(Wu and Ni, Prob Eng 
Mech, 2003)

• Life to failure
• μ = 56,314 cycles
• σ = 10,231 cycles

Fatigue Life Distribution
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Fatigue Life Distribution

• Fit log-normal 
distribution to data
• 5% and 95% 

bounds on mean 
curve

• Fit acceptable at 
5% significance 
level (K-S test) 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40000 50000 60000 70000 80000

Cycles

C
D

F

Exp. Wu and Ni
Exp. log-normal fit

Al 2024-T351
CT Specimen



Fatigue Life Distribution

• Monte Carlo 
simulation
• 1,000 trials

• Predicted (Unipass
and Nessus)
• μ = 52,000 cycles
• σ = 4,000 cycles

• Experimental
• μ = 56,314 cycles
• σ = 10,231 cycles
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Fatigue Life Distribution

• MV and AMV from Nessus
• FORM from Unipass

• AMV and FORM results 
within the MC sampling error

• Good agreement for critical 
shortest lives

• Long-life behavior not 
accurately modeled
• Different mechanism?
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Predicted Life at Pf = 0.01

• AMV, MV and FORM give comparable results to MC in 
small fraction of time

• Best performance 
• AMV and MV methods in Nessus
• FORM method in Unipass

7 min843,911U-FORM
5 min543,495N-AMV
4 min443,292N-MV
16 hrs100043,671U-MC-1k
17 hrs100042,697N-MC-1k

Time# of TrialsLife (cycles), Pf = 0.01Method

N=Nessus, U=Unipass



Sensitivity Analysis
• Sensitivity factors are a 

measure of relative 
importance for each 
variable’s contribution 
to scatter in life with 
respect to μ and σ

• Variability in CGR 
relation most important

• Sy and KIC may be 
modeled as 
deterministic

CT Specimen
Pf = 0.01
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Model Verification #2
SENT specimen



Verification of Model

• Data available for 24 constant amplitude
fatigue tests on SENT specimens of 
Al 2024-T3 (Laz et al., IJOF, 2001; Newman 
et al., AGARD, 1988)

• Probabilistic model
• Identical geometry
• Variability in initial crack size, fatigue crack growth 

rates and yield strength
• Initial crack size based on microstructural features
• Yield strength affects crack closure
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AFGROW Model
• SENT geometry

• W = 45 mm, L = 203 mm, B = 2.54 mm
• r = 2.813 mm, Kt = 3.165
• Smax = 120 MPa, R = 0

• Modeled with FASTRAN II crack closure model

•

• C1, C2 determined with da/dN-ΔKeff curve
• Effective threshold ΔKo = 0.1 MPa-m1/2

• Failure based on life to breakthrough
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• Based on crack nucleating 
particles in Al 2024-T3 
SENT specimens
• Measured with replica 

techniques
(Laz et al., IJOF, 2001)

• Log-normal distribution
• Width 2a: μ = 8.95 µm

σ = 4.10 µm
• Depth c: μ = 13.6 µm

σ = 5.58 µm
• Correlation coefficient 

of 0.0359



Fatigue Life Distribution

• Experimental data
• Laz et al. (IJOF, 2001)
• Newman et  al. 

(AGARD, 1988)

• Life to breakthrough
• μ = 198,515 cycles
• σ = 146,200 cycles
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Fatigue Life Distribution

• Fit log-normal 
distribution to data
• 5% and 95% 

bounds on mean 
curve

• Fit acceptable at 
5% significance 
level (K-S test)
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Fatigue Life Distribution

• Monte Carlo simulation
• 1,000 trials

• Predicted (Unipass)
• μ = 215,000 cycles
• σ = 265,000 cycles

• Experimental
• μ = 198,515 cycles
• σ = 146,200 cycles 0.0
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Fatigue Life Distribution

• MV and AMV from Nessus
• FORM from Unipass

• MV less accurate in regions 
away from mean
• Limitation of method

• Very good agreement for 
AMV and FORM with MC
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Predicted Life at Pf = 0.01

• Limitation of MV method - often less accurate in tail 
regions

• AMV and FORM give comparable results to MC in small 
fraction of time

40 sec1073,505U-FORM
20 sec675,327N-AMV
17 sec524,035N-MV
1.3 hrs100072,864U-MC-1k
1.3 hrs100068,465N-MC-1k

Time# of TrialsLife to breakthrough
(cycles), Pf = 0.01Method

N=Nessus, U=Unipass



Sensitivity Analysis

• Life most sensitive 
to amount of 
variation in initial 
crack depth (c)

• CGR relation plays 
important role

• Sy may be modeled 
as deterministic

SENT Specimen
Pf = 0.01
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Probabilistic S-N Curve
• Fatigue life to fracture 

for the SENT specimen

• AMV method evaluated 
at multiple stress levels 
to compute 1% and 
99% bounds

• Useful in design 
evaluation and risk 
assessment

• Computation time of 12 
minutes

0

50

100

150

200

250

300

350

400

450

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Life, cycles

S
tre

ss
, M

P
a

Life (1%)
Life (99%)

Al 2024-T3
SENT Specimen
Life to Fracture



Probabilistic S-N Curve
• Sensitivities depend on stress level (from AMV)
• Life was most sensitive to amount of variation σ in initial 

crack depth (c)
• CGR relation also an important factor

Increasing stress from 80 to 400 MPa
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Discussion
• Interface developed to link probabilistic software (Nessus

or Unipass) with AFGROW
• Custom scripting utilized COM interface
• While demonstrated here for lab fatigue tests, interface can be 

used with variability in any parameter available in AFGROW

• Efficient probabilistic methods accurately predicted the 
shortest fatigue lives in both experiments 
• AMV for Nessus, FORM for Unipass

• Probabilistic AFGROW analyses can provide important 
information for assessing risk of aircraft components
• Efficient probabilistic methods can provide timely information for 

decision making



Thank you!
Questions?
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