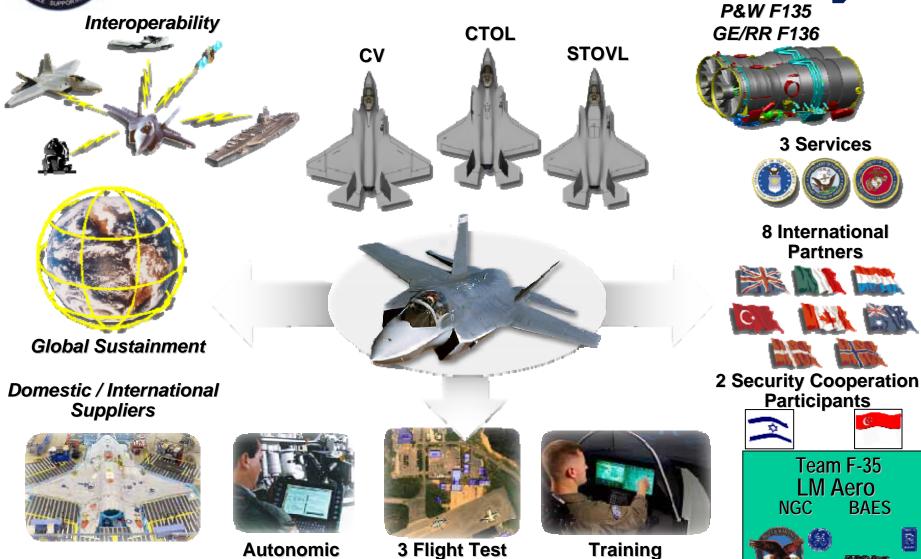


Doc. No. _____ Date: _____

F-35 Aircraft Structural Integrity Program Overview 28 November 2006

Joseph B. Yates Senior Manager, F-35 ASIP IPT Structural Development and Integrity

Copyright 2006 by Lockheed Martin Corporation.


<u>CURRENCY NOTICE:</u> A hard copy of this document may not be the document currently in effect. The current version is always the version in the Lockheed Martin Network.

Robert J. Burt F-35 Chief Structures Engineer & Director Structural Development and Integrity

F-35 – Many Programs in One

JSF

Use **COGISTICS** e information con **Facilities** subject to the restrictions on the Cover Page LM JSF Team Program Information

- The F-35 Program Offers An Unprecedented Opportunity To Leverage The Fundamental Concepts Of ASIP To Supply Each Of Our Government's Service Branches An Airframe That Meets Their Unique Structural Integrity Requirements At An Affordable Price.
- Meeting These Varied Requirements In The Concurrent Development Of The Three Aircraft Variants Presents A Unique Challenge Of Identifying Opportunities For Commonality, Reaching Consensus With Multiple Customers, And Execution Of The Variant Tasks Within The Reduced Cost And Schedule Goals That Form The Vision Of The Joint Strike Fighter Concept.
- The 5 Pillars Of ASIP Provide The Roadmap To Both Identify These Opportunities And Meet These Challenges

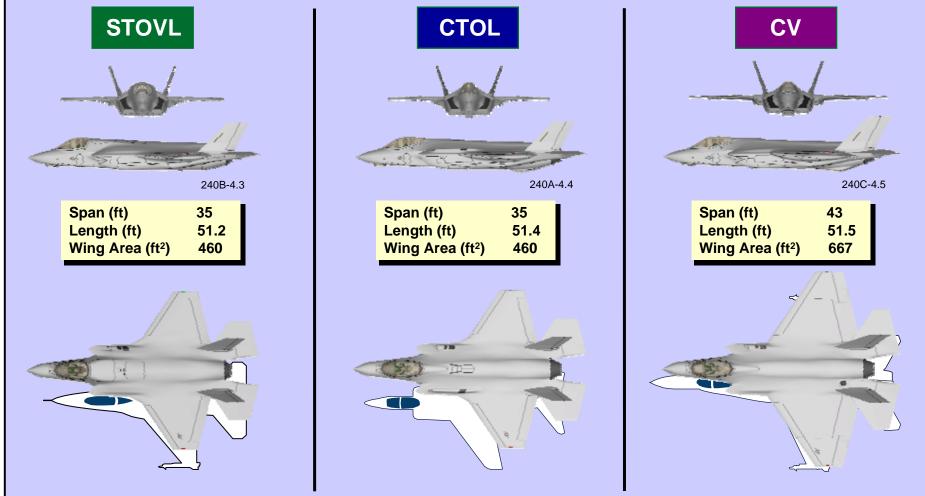
- Program Overview
- Pillar 1 Design Information & Development Planning
- Pillar 2 Design Analysis and Development Test
- Pillar 3 Full Scale Testing
- Pillar 4 Certification and Force Management
 Development
- Pillar 5 Force Management
- Summary
- Q&A

F-35 Background

- The F-35 Program Consists of 3 Air Vehicle Configurations or Variants and the Autonomic Logistic System that Will Support Them
 - F-35A is a Conventional Take-Off and Landing (CTOL) Variant
 - F-35B is a Short Take-off and Vertical Landing (STOVL) Variant
 - F-35C is a Carrier Variant (CV)

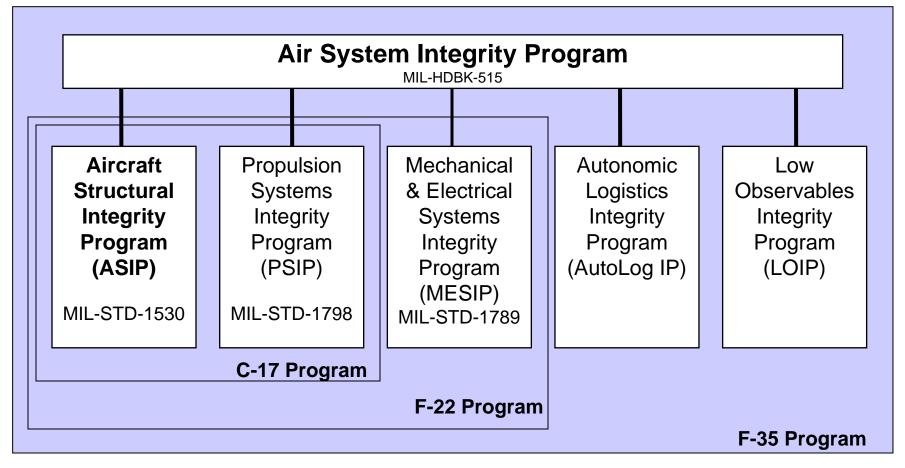
Unique Opportunities

- "Commonality Benefit"
- Structural Similarity
 - Building Blocks
 - Full Scale Tests
- Three Variant Certification
 - Shared Flight Test Pts


Unique Challenges

- Performance Based Specification
 Versus Certification Authority
- "Joint" Requirements
- Multiple Customers
 - Life Management
 - Certification Approaches

F-35 Variant Comparison



F-35 Integrity Program

F-35 ASIP Is Structured Conventionally per MIL-STD-1530

ASIP Task Overview

	АТР	PDR			
	Task I Design Info & Development Planning	Task II Design Analyses & Development Tests	Task III Full Scale Testing and Certification	Task IV Force Management Data Package	Task V Force Mgmt, Production and Sustainment
Timeframe	ATP to PDR	PDR to CDR	CDR to Production Go-Ahead	Production Go- Ahead to Operational Life Management	On-going
Planning & Coordination	Initial	Update	Update	Update	
Design & Analysis Criteria	Initial	Update	Update	Update	
Characterize Environment	Initial	Update	Update	Update	
Characterize Materials	Initial	Update	Update	Update	
Characterize Production & Quality		Initial	Validate	Execute	
Critical Items	Initial	Update	Update	Update	
Structural Analysis		Initial	Update	Validate	
Test	Coupons & Elements	Element to Sub- Component	Component to Full Scale		
Life Management	Initial	Update	Update	Validate	Execute

Use or disclosure of the information contained herein is subject to the restrictions on the Cover Page

LM JSF Team Program Information

Performance Based Specification

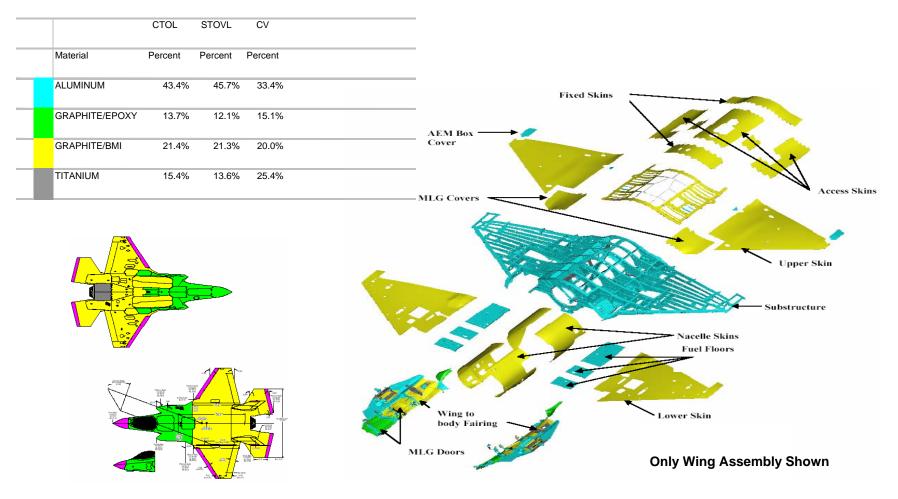
- Few Direct Structural Specification Requirements Are Included In Joint Contract Specification
 - Structural Requirements Are Derived From Performance Requirements
 - Principal Structural Requirements:
 - 90% Of The Aircraft Delivered Must Meet The Service Life Requirement
 - The Air System Must Be Durable, Damage Tolerant, Fault Tolerant, Fatigue Resistant, Corrosion Resistant...
- With Few Direct Specification Requirements, A Rigorous ASIP Plan Is The Principal Means Of Certification And Contractual Verification.

Pillar 1 – Design Information & Development Planning

- Many Of The Challenges Of The PBS Environment Are Associated With The First Pillar Of ASIP
 - Ambiguous Performance Based Requirements Rather Than Detailed Specifications
 - Multiple Customers With Varying Traditional Approaches to Development Process & Certification
 - Disconnect Between PBS Approach And Customer Certification
 - JPO Customers As IPT "Partners"
- As a Result, Significantly Greater Effort Was Required During the Planning Stage to Establish Common Expectations Between the Customer and Contractor Teams

Structural Materials Selection

- F-35 Selected Mature Materials For Structural Applications
 - Composite Materials IM7/977-3 and IM7/5250-4 Characterized on other Lockheed Programs
 - 2124 and 7050 Plate Products Well Established In Military Applications
 - 7085 Forgings New, But Supplier had Complete MMPDS Database
 - Ti 6-4 BA Plate and Forgings Well Characterized on Other Military Programs


Approach Minimized Static Coupon Level Tests and Specification Development and Enabled Focus on Fracture/Fatigue Properties and Corrosion Behavior

Structural Material Distribution

Airframe Structure Only

Pillar 1 – Design Information & Development Planning

- The Overall Status Of This Pillar Of The ASIP Plan Is Very Mature.
 - The Planning, Coordination And Establishment Of Design And Analysis Criteria Are Now Maturing In Step With The Program Needs.
 - The Characterizations Of The Materials, Joints, Environment Are Nearing Completion.
 - The Identification And Control Of Critical Items Is Proceeding In Concert With The Development Of Each Variant And Is Complete For CTOL & STOVL.
 - The Test Program To Establish The Material & Joint Allowables, Corrosion Prevention Methods And To Evaluate New Construction Techniques Is Nearing Completion. The Remaining Test Are For Confirmation Of Limited Data Sets Or Validation Or Full Scale Test Truncation Levels.
 - The Life Management Concept Of Operations Was Developed Early In The Program And Is Being Matured As Part Of The Following Tasks Of ASIP.

Pillar 2 – Design Analysis and Development Test

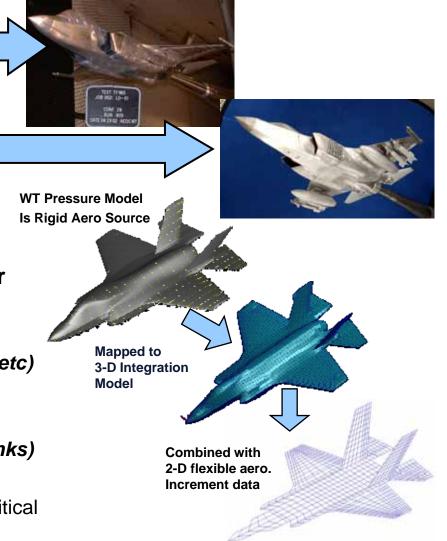
- The Overall Status Of This Pillar Of The ASIP Plan Depends On The Variant Under Consideration.
 - The Updates To The Certification Plans Are Maturing As The Details Regarding Critical Loadings And Failure Modes Are Revealed By The Structural Analysis
 - The Structural Analysis Of The CTOL And STOVL Variants Are Nearly Complete.
 - Sizing Of CV Variant Structure Is Well Under Way With CDR Scheduled For Late Spring '07.
 - The Element And Sub-component Tests To Reduce Risk Or Validate Design Details And Structural Analysis Methods Are Nearing Completion.
 - The Life Management Plans Are Maturing With Development of the Infrastructure for Data Collection Under Way and Locations of the SPHM Strain Gages Defined for STOVL & CV Variants

Structural Analysis

- Structural Analysis Methods and Tools Established and Validated
 - Common Methods Used Throughout Multi-Company, Multi-National Team
- Internal Loads and Spectra Developed and Deployed Simultaneously to All Sites
 - Rigorous Go/No Go Process Incorporated To Review And Concur With All Air Vehicle FEMs Prior To Release
- Structural Analyses Performed In a Detailed and Methodical Manner and Vaulted in Common Databases
 - Stress Analysis
 - Durability and Damage Tolerance Analysis
 - Acoustic Analysis
 - Flutter Analysis
 - Vibration Analysis
 - Buffet Analysis
 - Thermal Analysis

Detailed and Rigorous Structural Analysis Performed

External Loads Development

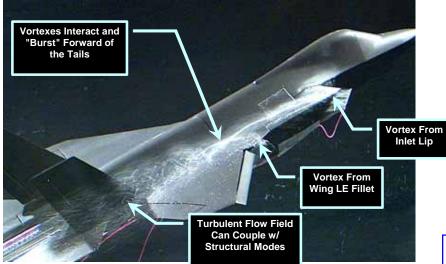


F-35 Loads Wind Tunnel Tests

Model	Objective
L-2: Full Span; 12% Scale	CTOL/STOVL external
CTOL/STOVL Pressure Model.	aerodynamic pressure
L-3: New Model (240A/B-4.1)	distributions.
L-2.1: Full Span; 12% Scale CV	CV external aerodynamic
Pressure Model.	pressure distributions.
L-3C: New Model (240C-4.5)	
CFD analysis by AEDC	Store Loads For External
	Carriage of A-A Missiles.
A-5.1: Full Span; 1/15 Scale	Store Loads For External
External Store Airloads Model	Carriage of A-A and A-G
	Weapons.
S-2: Part Span; 1/15 Scale	Store Loads For Internal
Weapons Bay Model	Carriage of A-A and A-G
	Weapons. Weapons Bay Door
	Pressures.

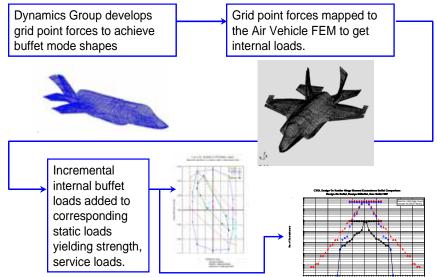
Balanced Aircraft Load Conditions For Air Vehicle FEM Application

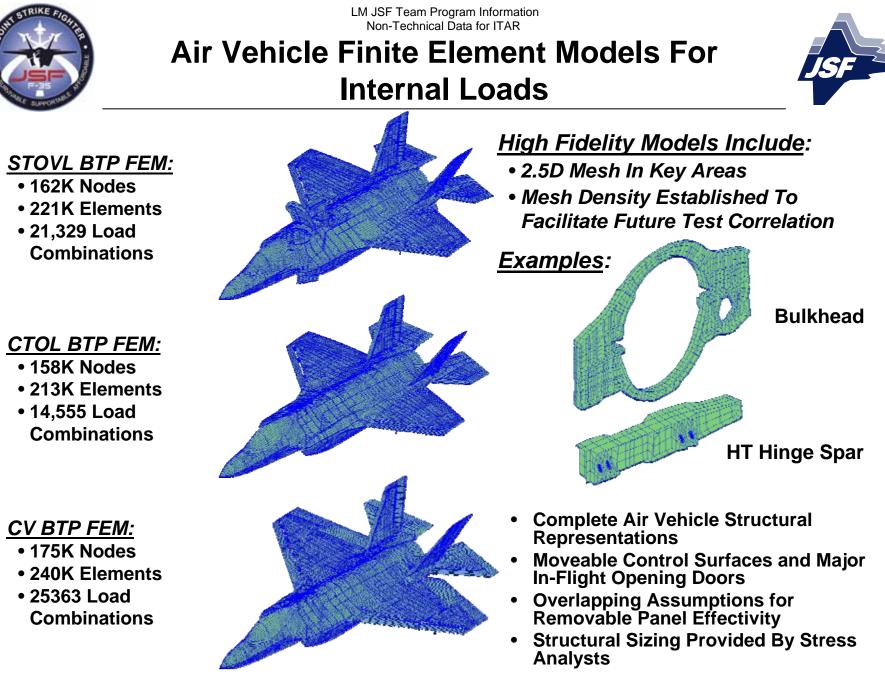
- Critical Maneuver Loads
- Critical Dynamic Loads (buffet, store eject, etc)
- Critical Ground Handling Loads
- Deflection Critical Load Conditions
- Pressurization Loads (cockpit, inlet, fuel tanks)
- "Parent" Conditions For Component Loads
 - Full aircraft balance for superposition of critical component loads; e.g. weapon bay doors.



Empennage Buffet Loads Development

Water Tunnel Tests Show Vortex Interaction




- Buffet Environment Defined For Initial Design Of All Variants
 - Maximum Combined Maneuver Plus Buffet Loads
 - Design Load Spectra Include Buffet Load Cycles Consistent With Usage
 - Vibration Environment For Systems And Installations

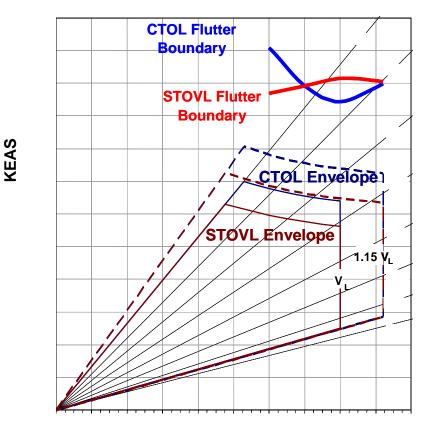
Wind Tunnel Tests:

- 1/40th Scale Water Tunnel Test
- Early HT Tests
- VT Test
- Buffet Fences
- 1st Wing Buffet Test
- STOVL/CTOL Database

<u>Component Loads From</u> <u>Calculated Buffet Response</u>

Air Vehicle Finite Element Analysis Internal Loads Data Storage And Delivery

- Storage & Distribution Of Internal Loads Datasets
 - Includes Finite Element Models, Applied Loads, And Internal Load Databases
 - Configuration Controlled On Dedicated Loads Data Server
 - Accessed By Structural Analysts Worldwide Through Encrypted Network
- Internal Loads Data Released In Fort Worth Is Instantaneously Available To Partners And Suppliers

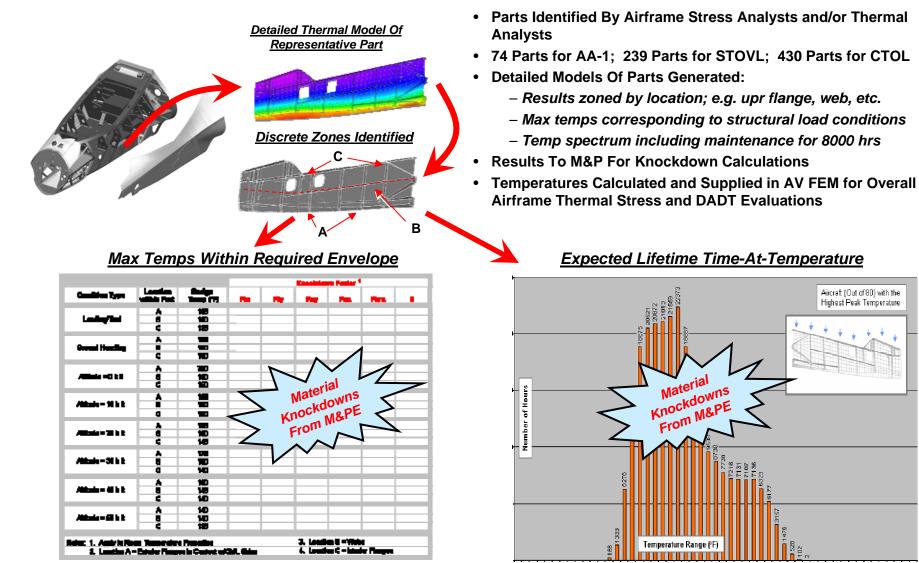


Aft Fuse/Empennage Wind Tunnel Model Installed In NASA LaRC TDT

- WT Testing To Verify Transonic Empennage Characteristics And Free Play Requirements
- Clean Aircraft Flutter Analyses
 - Set Structure, Systems Stiffness Requirements
 - All Variants Meet Flutter Requirements
 - All Surfaces Free From Divergence
- External Store Flutter Analyses
 - Establish Stiffness Requirements
 - Weapon, Pylon, And Hardpoint Geometry
- Aeroservoelastic Analysis
 - Structural Filters For Flight Controls

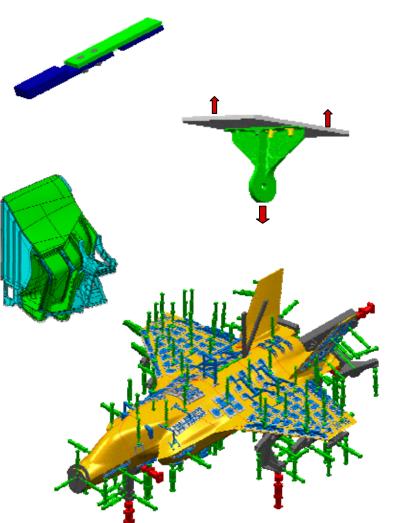
STOVL/CTOL Clean Aircraft Flutter Margins

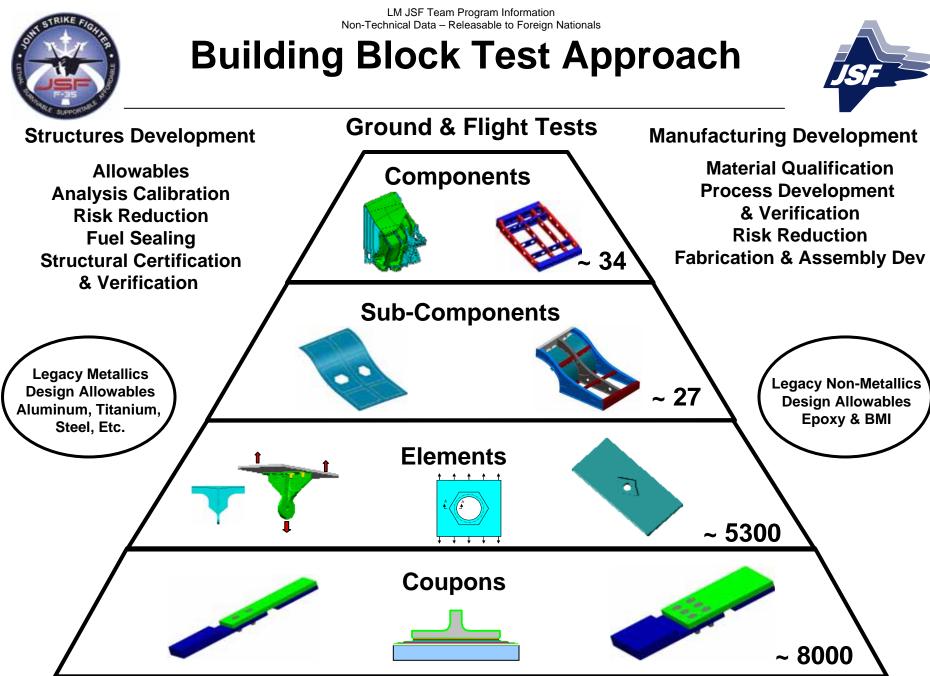
MACH



- Differing AF And Navy DADT Philosophies Require Development Of Service Unique Repeated Load Spectra
- CTOL DADT Analyses Are Based On Mission Based Spectra
 - Durability Uses 90th Percentile Spectrum
 - Based On Crack Growth Analysis
 - Damage Tolerance Uses Mean Spectrum
 - Average Crack Growth Rate And Strain Life Curves Used
 - Critical Crack Sizes Based On Guaranteed Minimum Fracture Toughness (Spec Min)
- STOVL & CV DADT Analyses Are Based On CPITS Spectra
 - Both Durability And Damage Tolerance Analyses Use The Severe "Critical Point In The Sky" (CPITS) Spectrum
 - Durability Analysis Based On Crack Initiation
- DADT Analyses Accomplished Using IMAT Tool At All Sites

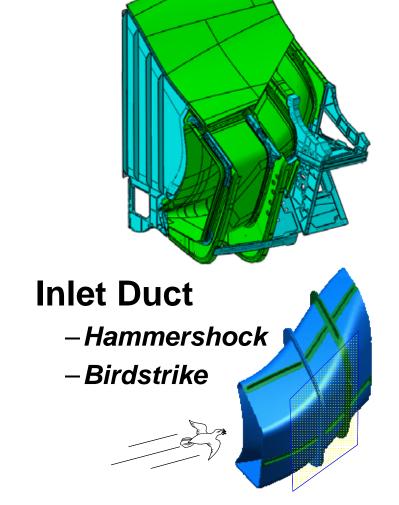
Structural Temperature Definition

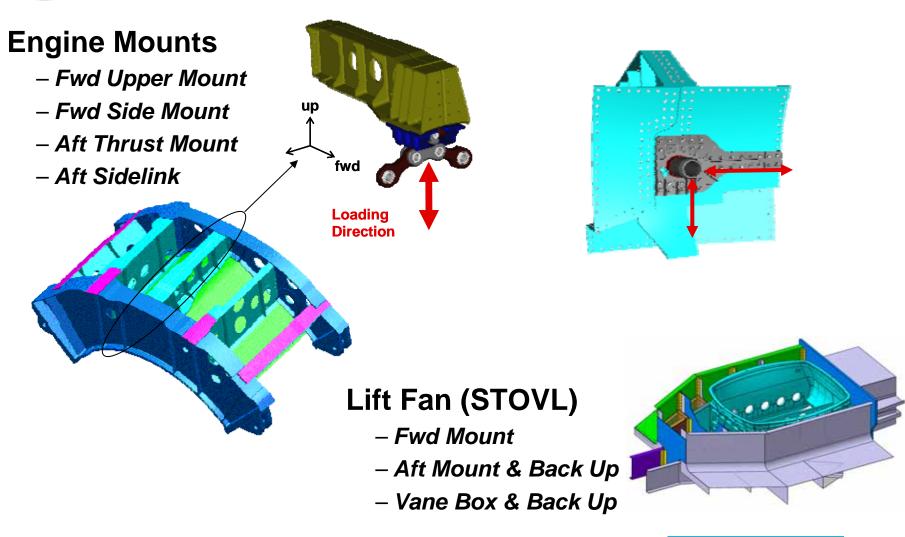




Tests and Demonstrations

- F-35 Structural Test Program Follows Traditional Building Block Approach
- Tests Include
 - Building Block Tests
 - 6 Dedicated Static & Durability Articles
 - 1 Combined Drop Test/ Barricade/Live Fire Test
 - Ground Tests (SCT/GVT/Etc)
- Tests Address:
 - Material Characterization
 - Effects Factors
 - Development/Risk Reduction
 - Structural Analysis
 Correlation/Calibration
 - Allowables
 - Qualification
 - Certification


Structural Certification Tests


Canopy Verification

- Electrostatic Discharge
- -Birdstrike
- -Latch/Unlatch
- -Pressurization
- Thermal Fatigue
- -Lightning Strike

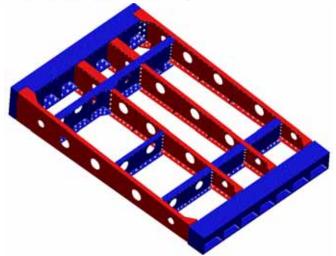
Vane Box & Back Up

Structural Certification Tests

BMI Nacelle Skin Fire Resistance

– Wing Spar Box

- Horizontal Tail


– Control Surfaces

– Weapons Bay Sidewall

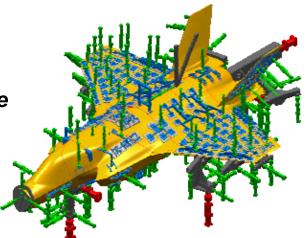
Panel 2CSF21001-0003-1

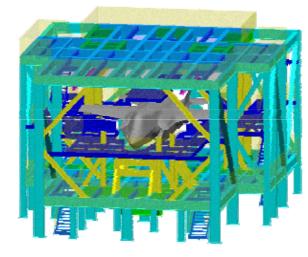
JSF

Wing Acoustic Box Internal Structure

Use or disclosure of the information contained herein is subject LM JSF Team Program Information

cation Tests


Lightning Strike Verification

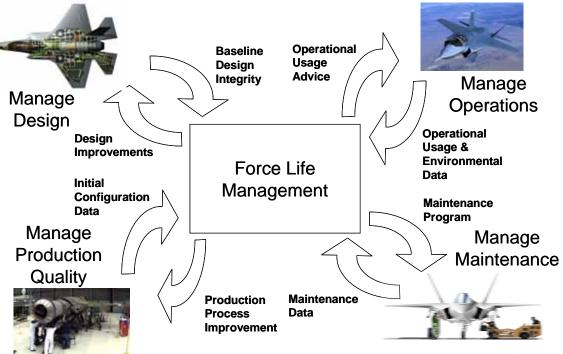


Pillar 3 - Full Scale Tests

- Full Scale Ground Tests
 - One Static Article per Variant
 - One Durability Article per Variant
 - One Combined Drop Test, Barricade Test, and Live Fire Article for the CV Variant
- On Aircraft Tests
 - Proof Tests
 - Freeplay Tests
 - Ground Vibration Tests
 - Structural Coupling Tests
- Common Test Arrangements Support Affordability
 - Full Scale Fixtures Designed to be Common
 - Common Data Acquisition Systems Selected
 - Tests to be Conducted at Multiple Locations to Support Program Schedule
- Design of Loading Arrangement Enables Rapid Reconfiguration Between Loading Conditions
- Automated Structural Analysis Tools Developed to Enable Rapid Evaluation of Test Load Arrangement

Pillar 4 – Certification and Force Management Development

- The Certification Plans Which Document The Means To Provide The Evidence Needed To Support Certification Of The Aircraft Structure Are In Work For All Three Variants.
 - STOVL & CTOL Plans Are Released For Initial Reviews
 - CV Is Currently In Draft Form
- The Force Management Package Development Is Not Yet Started Due To The Maturity Of The Three Variants.


- The Development Of The Force Management System Started Earlier On The F-35 Program Than On Recent Legacy Programs.
- The Autonomic Logistics Portion Of The F-35 Program Will Provide A Robust System For Storing, Retrieving And Presenting The Usage Data For Each Aircraft, Squadron Or Mission Type In A Useful Format For Decision Makers.
 - The Prognostics Health Management (PHM) And Structural Prognostics Health Management (SPHM) Data Will Be Resident Within This System
 - Ten Percent Of The Fleet Is Planned To Be Instrumented During The Production Phase With SPHM Strain Gages
 - 100% of SDD Aircraft are Instrumented

Force Life Management

- Plan for F-35 Force Life Management Established Early in Program
- Plan Establishes
 - Organizational Structure For Logistics Support
 - FLM Operational Concept
 - Direction For
 Effective Aircraft
 Management

F-35 Life Cycle Support

Overall ASIP Status

- Pillar 1 Essentially Complete
- Pillar 2 Nearing Completion for STOVL & CTOL, Under Way for CV
- Pillar 3 Detailed Planning in Place for AA:1, Detailed Planning In Work For STOVL & CTOL
- Pillar 4 Plan In Place for Development of Data Package, Detailed Plans Maturing
- Pillar 5 Planning for Force Management System In Place Early, Development of System In Work.

- A Rigorous & Disciplined ASIP Program Led By a Centralized Structures Group Remains the Best Means of Ensuring Structural Integrity and Providing Certification and Verification Evidence in a Performance Based Specification Environment
- The F-35 ASIP Program is Currently In The Midst of Pillars 2 & 3, with Groundwork Laid for Pillars 4 & 5, and is Progressing Toward Flight Certification.

Bob Wants to Know – Yous Guys Got Any Questions?

