Current Health of the F-16 Fleet

Kimberli Jones, Ph.D., SAIC Robert McCowin, USAF, Ogden ALC Bryce Harris, USAF, Ogden ALC

Overview

- Introduction
- Background
- Health of the Fleet Analysis
 - Data Collection and Sources
 - Analysis Process
- Conclusions

Introduction

- The F-16 is a compact, multi-role fighter aircraft.
 - Flown by the United States and many additional countries.
 - First version flown in December 1976.
- Various models (10/15, 25/30/32, 40/42, 50/52) introduced in subsequent years.
 - Many of the oldest aircraft have been retired.
 - Exact retirement dates for remaining aircraft are unknown.
- Aircraft structural integrity must be maintained throughout the remaining life.

http://www.hill.af.mil/388fw/ViperWestLink/new2004 photos/demo2004/pages/climbing.htm

Introduction

- The Health of the Fleet (HOTF) analysis is an aircraft structural integrity program (ASIP) support tool designed to summarize and analyze fatigue cracking data obtained from various sources.
- Fatigue cracking trends are identified.
- Predictions for problematic areas of future cracking can be made.
- Maintenance cost and downtime for repairs and inspections are calculated for future planning.
- HOTF is important due to the extended service life requirements of the F-16.

Background: Design Paradigms

- Safe Life
 - Assumes no damage tolerance
 - Minimum inspections
 - Parts replaced when design service life reached
- Damage Tolerance
 - Assumed initial crack size
 - Estimates crack growth
 - Protects by inspections based on crack growth evaluation
 - Failure criteria defined for parts

Background: Design Paradigms

- Holistic Structural Integrity
 - Accounts for evolution of damage throughout the aircraft's service life
 - Identifies critical structure for various types of damage
 - Probabilistic determinations on presence of damage and subsequent life
 - Defines damage effects

Background: Health of the Fleet and Holistic Structural Integrity

- The Health of the Fleet analysis falls within the holistic framework.
- With HOTF, we can gain deeper understanding of aircraft sustainment requirements through:
 - Current fleet state,
 - Cracking problem areas,
 - Underlying causes of fatigue cracking,
 - Required maintenance actions,
 - Prediction of future issues, including cracking, and
 - Potential aircraft modification needs.
- HOTF assists in knowing what to expect, thereby minimizing "surprises."

Background: F-16 Structural Inspections

- Individual Aircraft Tracking (IAT) Program
 - Tracks potential structural damage growth
 - Adjusts average maintenance schedule based on individual aircraft usage
 - Projects flight hours and dates of maintenance requirements
 - Predicted from Durability and Damage Tolerance Analysis (DADTA)
- Phase Inspections
 - Based on crack findings
- Analytical Condition Inspection (ACI)
 - Sampling of critical structural components during depot modification or repair

Why perform a health of the fleet study?

- The F-16's mission mix has changed from the original design.
- Significant cracking has occurred.
- Many problem areas have been repaired and/or have had structure replaced.
- Future areas of fatigue related cracking need to be identified.

Health of the Fleet Analysis Purpose

- Determine cost of:
 - Current inspections
 - Future modifications
- Data collection to support:
 - Aircraft attrition
 - Risk analysis

Prior F-16 Modification Programs

- Most modification programs identify and replace well known problem areas. These mod programs include:
 - SLIP/SLEP
 - Falcon UP
 - Falcon STAR
- Health of the Fleet analysis will assist in prediction and identification of problem areas to prevent reactive type program development.

Health of the Fleet Study Process

- Collect fatigue cracking data
- Analyze findings
- Identify trends
- Predict areas of future cracking
- Quantify maintenance costs and downtime for inspections of interest (example: IAT)

Health of the Fleet Analysis

Sources of data:

- Requests for engineering disposition, ~1600 entries related to fatigue cracking (web-based)
- Lockheed Martin F-16 Fleet Cracking Database, ~4500 entries
- Individual Aircraft Tracking (IAT) reports and control points/Data Processing System (DPS)
- Fleet Structural Maintenance Plan (FSMP)

Analysis Details

- Requests for engineering disposition (107T/202, web-based)
 - Only fatigue related cracking used from database
 - Duplicates from 107T/202 and Lockheed databases eliminated
 - Cracking occurrences charted by flight hours, part number, etc.
- Lockheed Martin F-16 Fleet Cracking Database
 - Database fed from various sources
 - Incidents of fatigue related cracking reported

SAIC Analysis Details (continued)

- Individual Aircraft Tracking (IAT)/Data Processing System (DPS)
 - Information on control points, planned maintenance actions, and baseline crack growth are among the data used
- Fleet Structural Maintenance Plan (FSMP)
 - Information on inspections, control points, and predicted life are examples of data used

SAIC Health of the Fleet Overview

Engineering Disposition Request Fatigue Crack Database

Engineering Disposition Request Fatigue Crack Data

AFMC F-16 Stru Repair S	ictural	Maintenance (Field Member) Login	Engineering Login Management	WANT OF	ALC/YPVS APB, Utali	
V		**		Hill	AFB, Utah	
	Q Problems Related Sites					
YPVS Chief Structural Engineer: Tim Sorensen	Fatigue Crack In This page displays the inform	formation nation stored in Fatigue Crack Database.				
Engineering Main	CONTROL NUMBER:	DATE:	BLOCK:	PART NUMBER:	AIRCRAFT S/N:	
View NCR and Status	LENGTH:	ORIENTATION:	REPAIR DESCRIPTION:	ORIGIN:	MULTIPLE CRACKS:	
Assign NCRs	2"	inboard - outboard	Replace Part	Edge	No	
Answer NCRs	COMMENTS We have a crack on					
Edit a NCR	in the Center of the paner about 2 long					
Add / Delete NCR Files	Add Fatigue Crack for this NCR View Complete Fatigue Crack List					
Approve NCRs						
Field User Login	2 10 0 2 3					
Review NCR Database	Cracking information sent to LMAero. 107-T NONCONFORMING TECHNICAL ASSISTANCE REQUEST AND REPLY					
Member Management						
Rescind or Delete a NCR	PARTA					
Reassign NCR for	1. TO	2. FROM	3. DATE		4. CONTROL NUMBER	
Approval	5. NOUN	6. PART NUMBER		STOCK NUMBER	8. SERIAL/TAIL NUMBER	
	9. UNIT AIRCRAFT ASSIGNED TO	10. T.O./DWG NUMBER	11. WORK STOPPAGE	12. ORGANICALLY CAUSED	13. QUALITY ASSURANCE NOTIFIED	
	A/C DEFICIENCY REGION Fusela	ge, Aft	A/C FLYING H	OURS PROE	BLEM POC	
	14. DEFICIENCY AND RECOMMENDATIONS					
15. INITIATOR (Signature/Office Symbol/Phone)		obol/Phone)	16. IND. ENGF	16. IND. ENGR. TECH/PLANNER (Signature/Office Symbol/Phone) N/A		
	PART B					

Major Tasks

- Summarized fatigue cracking data
 - Engineering disposition requests
 - Fleet cracking data from Lockheed Martin FIN
 - Periodically updated
- Identification of potentially life limiting structural locations
- Development of <u>Selected Inspection Cost Estimator</u> (SLICE) website

Block 25/30/32 341.80 Bulkhead Percentage of Fleet Affected by Cracking vs. Flight Hours

Block 40/42 16W187 (BL 41.50, Wing Root Fairing Support Details) Percentage of Fleet Affected by Cracking vs. Flight Hours

Analysis Assumptions

- Number of cracks is cumulative.
 - Part repair or replacement are not accounted for in crack counts.
- Charts exclude reported cracks without date or flight hour information.
- Multiple cracks may exist on the same part on the same aircraft.
 - example: bulkhead with cracks in several fastener holes.

Analysis Assumptions (continued)

- The same crack may be reported repeatedly due to crack growth reports.
- Percentage of aircraft affected is calculated using fleet size in the crack report year.
 - Some historical records may be inaccurate as the date may reflect input into the system instead of the report date.
 - Flight hours, when available, are assumed to be correct.

Web Based Selected Inspection Cost Estimator (SLICE)

- Input data obtained from FSMP and equipment specialists
 - IAT control point number and description
 - Hours to first inspection and subsequent inspection interval
 - Hours required for inspection procedures
- Calculated values
 - Projected years for inspections
 - Successive inspections are predicted
 - Years for inspections adjusted for individual aircraft flight hours
 - Required hours for inspections and cost per manhour used to estimate overall inspection costs

Web Based SLICE (continued)

- Output (current and projected)
 - Chart of projected labor hours and associated cost by year
 - List of the projected top ten control points by cost per year
 - Anticipated aircraft downtime for IAT and/or selected inspections per year

Web Based SLICE (continued)

- Features of estimator program
 - Interactive capability to change:
 - flight hours per year
 - labor cost
 - hours required for unique access and inspection of a control point

A - 62 - A

- inspection intervals
- aircraft attrition per year

Web Based Selected Inspection Cost Estimator (SLICE) Overview

F-16 Health of the Fleet						
Master View Aircraft Selection Control Point Selection Administration Utilities						
Criteria Criteria						
General Information						
Select Report Title: Demo Report						
Select labor rate: \$ 56						
Aircraft Information						
Select Block(s):						
□ 25 □ 30 □ 32 □ 40 □ 42 □ 50 □ 52						
Retirement Information						
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016	2017 2018 2019 2020					
0 0 0 1 1 1 10 21 42 86 183	207 198 172 336					
Analyze						
/ way 20						

FICTITIOUS DATA

Web Based SLICE Overview

Future Plans

- Investigate individual control points of interest based on risk assessment scenarios, risk-based maintenance action schedules, and aging aircraft projection
- Incorporate maintenance induced damage (dents, tears, etc.) for determination of major cost and downtime drivers
- Continue to update analysis with reported fatigue cracks
- Improve data reporting procedures and databases
- Create a corrosion specific database to facilitate easier tracking

Conclusions

- The Health of the Fleet analysis is an important part of sustaining the F-16 until retirement.
- The analysis is constantly evolving to address various problems and additional requirements that may arise.
- The Health of the Fleet analysis is designed so that new data may be introduced easily, and analysis options can be expanded.
- New databases continue to be introduced for useful ASIP data capture.
- The concepts used for the F-16 Health of the Fleet analysis can be applied to other airframes.

Acknowledgments

- Work performed by SAIC under USAF Contract F09603-01-D0208-QP23
- Special thanks to Phil Allen (SAIC)

Questions?

http://www.hill.af.mil/388fw/ViperWestLink/new2004photos/demo2004/pages/F-16%20TwoShip%20Viper%20West.htm