Some Thoughts on Probabilistic Design Charles Saff – Boeing – Phantom Works

Revised from Mil-Hdbk-17

Design's Function is to *Ensure* the As-Fabricated Strength Is Greater Than The As-Used Loads Throughout the Life

Traditional vs. Reliability-Based Static Strength Design

Can we *Ensure* That the Probability of Catastrophic Failure is Acceptably Low Throughout the Life?

Reliability-Based Design - Issue 1

 Acceptable probability of failure levels differ for the same criteria from military to commercial aircraft because of numbers of aircraft and flights per lifetime differ

	Military	Commercial
Primary Structures	10-7	10 ⁻⁹
	(one failure per lifetime per fleet)	
Secondary Structures	10 ⁻⁴ (one failure per lifeti	10 ⁻⁵ ime per aircraft)

 Today these levels are almost as arbitrary as the 1.5 factor of safety we so often use

Reliability-Based Design Issue-2

- Current Methods to Obtain the Tails of Material Strengths – e.g., A-Basis Requires
 - 300+ physical tests for standard statistical approaches
 - 300+ Monte Carlo simulations
 - 50-60 simulations for Adv.
 Mean Value Approach
 - All should represent material capabilities after manufacturing and assembly and after a lifetime of usage temperatures and environments

MC and AMV results for T=75 5.000 4 000 3.000 2.000 Standard Normal 1.000 0.000 850 800 900 1050 1100 1150 1200 Test Data -1.000 se Ž -2.000 -3.000 -4.000 -5.000 Failure Load

> Data from Herb Smith AIAA SDM 2006

Can We Define the Extremes Of the Material Strength Population with Fewer Tests?

Reliability-Based Design Issue-3

Can We Rationally Bookkeep the Relationships Between the Large Number Of Variables That Affect Material Strength?

As Our Ability to Model Fabrication Processes Improves

From DARPA/Navy AIM-C

We Now Model Tooling and Manufacturing Processes to **Attempt to Get Excellent Quality from Fabrication**

Designing for As-Fabricated Strength Is Improving

From DARPA/Navy AIM-C

Manufacturing Models Lead Us to Potentially Predict Defects That Might Be Induced in As-Fabricated Parts

Reliability-Based Design Issue-4

- But Our Ability to Predict Flaws Produced in Manufacturing New Configurations or By New Manufacturing Processes is Not Good At Present
- Our Ability to Find and Define Flaws in Advanced Structures is Not Perfect

From NTIAC NDT Capabilities Handbook

Are There Methods to Protect Structures from Large – Rogue Flaws Without Redundancy?