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• Recent aging aircraft issues have required 
detailed inspections of thick complex structures
– Lockheed Martin SB82-790 for the CC130 Centre 

Wing (CW) 
– Risk Analysis of Lower Wing Splices of the CP140 

(P3) as determined from the Service Life Assessment 
Program (SLAP)

– Risk Analysis of the F18 front spar as determined 
from International Follow On Structural Test Program 
(IFOSTP)
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UT: Many of the CF multi-layer structures (i.e. CP140 
and CC130 wing planks) are not bonded, or not 
consistently bonded between the faying surfaces as 
required for the transmission of sound

ET: Traditional applications of eddy current are affected 
by the thick structure, ferrous fasteners, and complex 
geometry (first and second layer edges)

RT: Insufficient sensitivity to sought defect size and 
orientation
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• Remote field eddy currents are generated by the same 
electromagnetic phenomena as traditional eddy currents

• First application in 1951 and widely used since for NDT 
of metallic pipes and tubing

• Requires a driver-pick-up or reflection-differential coil 
configuration (Rx coil must be isolated from Tx coil)

• In tube/pipe inspections the pick-up coil signal (or 
difference signal) is a function of:
– Wall condition
– Thickness
– Permeability and
– Conductivity
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• The pick-up coil phase angle has an approximate linear 
relationship with the wall thickness when placed 2-3 
diameters away from the excitation coil

• This allows for easy measurement of some material 
properties

• For example the RFEC technique is characterized by its 
equal sensitivity to both ID and OD defects, insensitivity 
to probe wobble/lift-off and not as limited by penetration 
depth

• This same phenomenon can be applied to flat geometries
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• In the tube case the induced eddy currents inside the wall restricts the 
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the direct coupling field

• If the direct coupling field can be restricted in flat geometries, then the 
sensing coil will only detect the EM energy that follows the indirect path
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• At this point the entire signal received by the pickup unit has 
passed through the wall/plate twice and carries the whole 
information about the wall condition

• The signal can be extremely weak, but is clean and without 
noise coming from the driving unit

• IMTT has developed a Super Sensitive Eddy Current (SSEC) 
System to exploit the RFEC characteristics in Flat Geometries 
using shielded probes

• This technology has initial success in addressing key 
inspection problems of aging aircraft in the Canadian Forces
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• Each lower surface of the CC130 CW 
box is comprised of 3 skin panels 
ranging in thickness from 0.150” to 
0.575” fastened to hat sections of 
approximate thickness 0.140”

• Test Piece represents the skin and 
stringer (skin Al 7075-T7351 0.250”
thick, stringer feet same material 
0.140” thick with ferrous fasteners)
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CP140 involve extruded 
planks with risers (vice 
stringers) and typically a 
single row of ferrous fasteners

• Skin thickness typically vary 
from 0.080” – 0.320”
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• The front spar of the F18 
is a thick Al structure and 
is attached to the thick 
composite (graphite) skin 
with ferrous fasteners

• The test piece involves 
horizontal flange of the 
spar 0.140” thick and the 
composite skin of 0.750”
thick
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• After post acquisition 
signal analysis EDM 
notches as small as 
0.135” were detected  in 
0.160” aluminum through 
0.750” of composite 
material with an S/N > 3.

• Test results were 
influenced by nearby 
fasteners and the sealant 
grooves (edge effects) in 
the second layer
– Can be overcome by probe 

offset or probe 
enhancements
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– Apply FG_RFEC methodology to test piece with notches in 

fastener holes without the sealant grooves
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Canada/USA/Australia/Netherlands SLAP project
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– Investigate possibility of combining FG_RFEC technology 

with C-Scan capabilities
– Investigate real time application of signal analysis algorithms
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