Practical Methods to Simplify the Probability of Detection Process

Investigation of a Model-Assisted Approach for POD Evaluation

Eric Lindgren, John Aldrin*, Jeremy Knopp, Charles Buynak, and James Malas

Air Force Research Laboratory, Materials and Manufacturing Directorate, Nondestructive Evaluation Branch *Computational Tools

> ASIP 2006 San Antonio, TX November 29, 2006

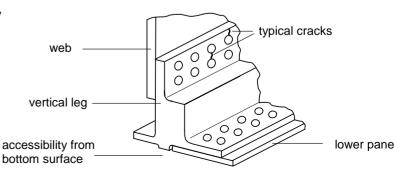
- Experimental Data Acquired by AFRL/UDRI (Hughes, Dukate, Martin)
- Air Force Office of Scientific Research
- Chuck Annis
- The R software environment for statistical computing and graphics was used for all statistical computation and statitical plots. R is an open source (free) software and is available for download at: <u>www.r-project.org</u>
- VIC-3D[®] was used for all eddy current simulations

Outline

- Motivation / Significance
- Background and Challenges
- Test Samples and Empirical Results
- Model-Assisted POD feasibility study
 - Full Model Assisted (FMA) protocol
 - Input Parameters
 - Signal and Noise Distributions
 - POD analysis
- Issues and Future Work

Wave of Requirements and Technologies

- Man-hours for NDT scheduled to increase dramatically
- Need to insert new technologies into the field, faster and cheaper
- Implementation of inspections without POD undermines NDE Reliability
- Damage tolerant risk analysis techniques demand Quantitative NDE (Gallagher, Babish, and Malas, 2005)


Motivation

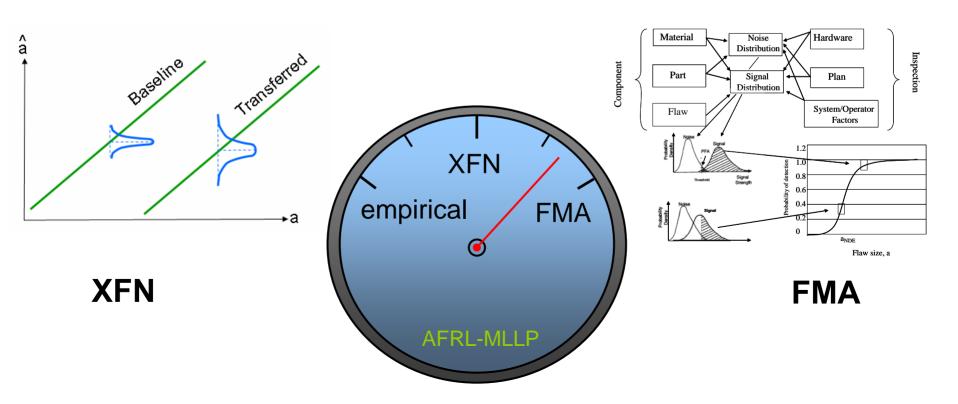
- Requirements for Performing Empirical (MIL HDBK 1823) POD Evaluation
 - High cost of parts (material)
 - High cost of flaw creation
 - Labor to perform POD study

(Wing carry through, Ti) (corner cracks, real load profiles)

- Additional Opportunities using Model-Assisted Approaches
 - Streamline validation of new technologies for in-field application
 - Improve confidence in NDE techniques for complex inspections
 - Address wide variations in flaw characteristics and location
 - Address variations in part geometry
 - Ex: C-130 Beam Cap Holes

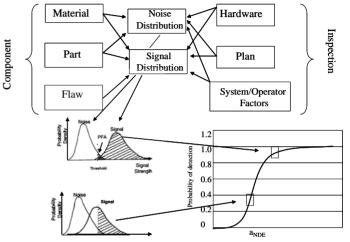
- Model-assisted Probability of Detection:
- Leverage existing information
- Transfer Function Approach (XFN)
 - Transfer from one set of conditions to another
 - Limited number of parameters change
- Full Model-assisted Approach (FMA)
 - Use physics-based models to determine capability of inspection process
 - Requires empirical data to validate models

Previous Work



- Model-Assisted Probability of Detection (MAPOD) working group established (2003) <u>www.cnde.iastate.edu/research/MAPOD/MAPODWG.htm</u>
- AFRL/Computational Tools efforts described in multiple journal articles (Knopp and Aldrin, et. al.)
- J.N. Gray, T.A. Gray, N. Nakagawa, and R.B. Thompson, "Models for Predicting NDE Reliability", ASM Metals Handbook, Vol 17 (1989)
- S.N. Rajesh, L. Udpa, and S.S. Udpa, "Numerical Model Based Approach for Estimating Probability of Detection in NDE Applications", IEEE Transactions on Magnetics (1993)
- R.B. Thompson, "Using Physical Models of the Testing Process in the Determination of Probability of Detection", Materials Evaluation (2001)
- Presentations of demonstrations presented at MAPOD working group
 - Kevin Smith (Pratt & Whitney)
- Repositories and protocols developed

- MAPOD Demonstration with Empirical Comparison
- Explore continuum from XFN (empirical) to FMA

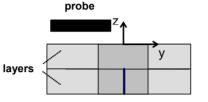


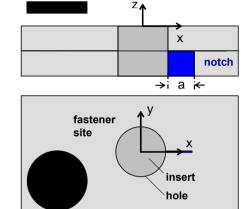
FMA Protocol (Thompson)

- 1. Identify the scope of the POD study
- 2. Identify factors that control signal and noise
- 3. Evaluate quality of physics-based models
- 4. Acquire / develop / validate simulation tools
- 5. Acquire input parameters / parameter distributions
- 6. Conduct flaw signal distribution simulations and noise signal distribution simulations
- 7. Acquire remaining information on factors empirically
- 8. Acquire marginal information on independent factors (average and variance of stochastic variable)
- 9. Acquire covariance information on dependent factors
- 10. Combine 6, 8 and 9 into full signal and noise distributions
- 11. Compute POD / POFC, ROC

Protocol available on MAPOD Website

Flaw size, a

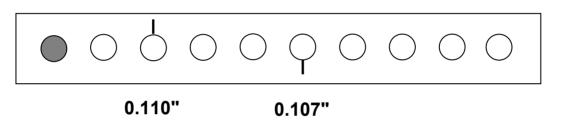

Representative Structure

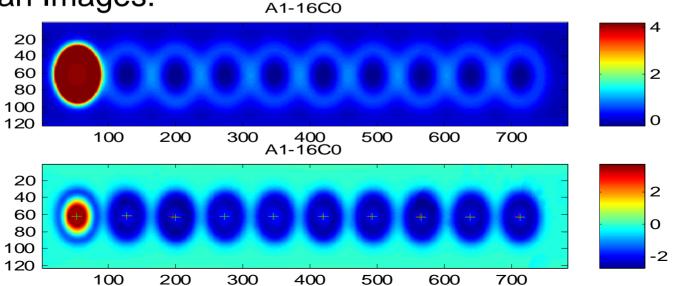


- Wing Splice Fatigue Crack Specimens:
 - Two layer specimens are 14" long and 2" wide,
 - 0.156" thick top layer, 0.100" thick bottom layer
 - 7075-T6 aluminum material
 - exterior coat: 0.004"-0.006" (0.10 0.15 mm)
 - faying surface: sealed with polysulfide and chromate corrosion inhibitor
 - 22 samples with 10 fastener sites each
 - 90% fasteners were titanium, 10% fasteners were steel
 - Fatigue cracks position at 6 and 12 o'clock positions (forward and aft directions)
 - Crack location in 2nd layer at near (faying) surface
 - Crack length ranged from 0.027" 0.169"
 - Estimated length of 0.10" when changes from corner to through wall crack

Fasteners, Probes, Scanning

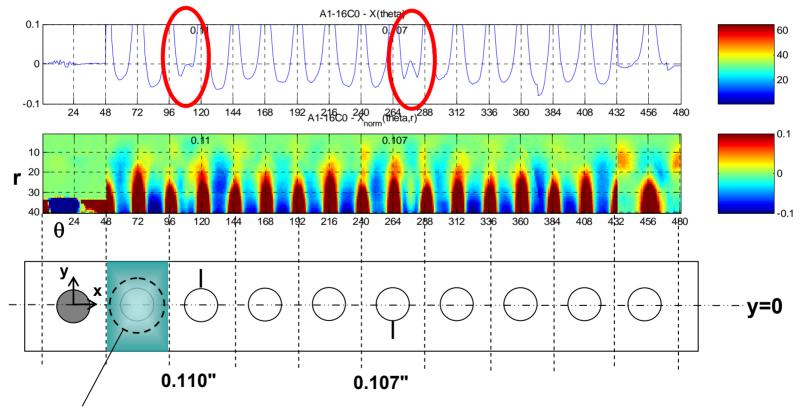
- Fastener Site:
 - countersunk fastener
 - diameter: 0.250" (6.35 mm)
 - 100 degree (cone) flush head
 - material: steel and titanium
 - distance between holes: ~0.73" (18.5 mm)
- Probe:
 - reflection probe
 - frequency of 600 Hz
 - initial estimate of coil inner diameter: 3 mm
 - initial estimate of coil outer diameter: 6 mm
 - cup core outer diameter: 15 mm (outer casing about 5/8")
- Scan Plan:
 - scan step size: 0.01" (0.25 mm)




Experimental Data

 Acquired by AFRL/UDRI using Automated surface scanning eddy current

• C-scan Images:

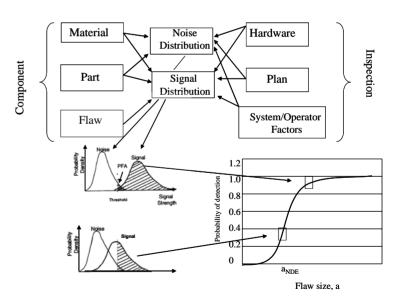


Bonus: Analysis of Experimental Data

- Circumferential feature plots
 - top: single line plot around hole
 - bottom: transformed polar image (r, $\theta \rightarrow x,y$):

circumferential line plot about estimated center of hole

Aldrin & Knopp, "Crack Characterization Method with Invariance to Noise Features for Eddy Current Inspection of Fastener Sites" (submitted to Journal of Nondestructive Evaluation October 2005)



- 1. Identify the scope of the POD study
- Demonstration of FMA MAPOD using wing splice as basis
- Compare with empirical evaluation

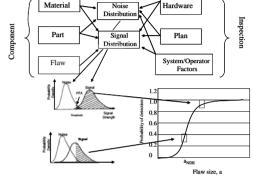
2. Identify factors that control signal and noise

A. NDE technique:

- 1. Probe characteristic response (asymmetry)
- 2. Probe lift-off
- 3. Scan resolution
- 4. Measurement noise (variability)
- 5. Classification algorithm design
- B. Part geometry, material and condition:
- 1. Outer layer surface condition (paint)
- 2. Layer thickness
- 3. Fastener type
- 4. Fastener / hole geometry (asymmetric gap / fit)
- 5. Proximity of adjacent fasteners and edges
- C. Flaw characteristics:
- 1. Flaw dimension and aspect ratio
- 2. Flaw orientation (around fastener site)
- 3. Flaw condition (partial closure, residual stress)

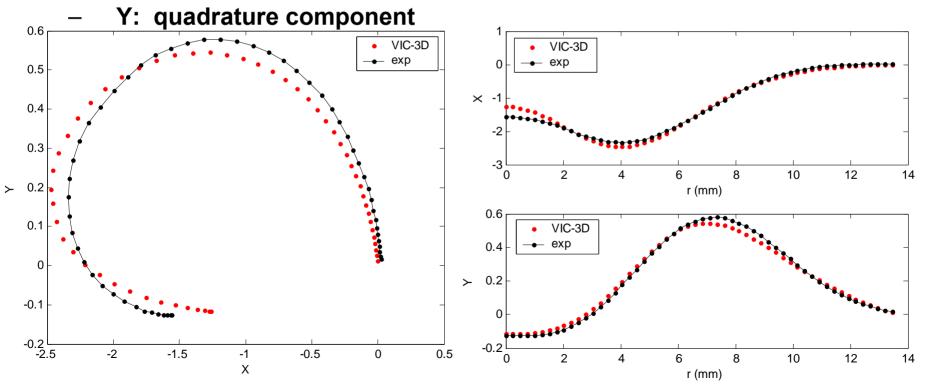
- 3. Evaluate quality of physics-based models
- 4. Acquire / develop / validate simulation tools
- 5. Acquire input parameters / parameter distributions
 - A. NDE technique:
 - 1. Probe characteristic response (asymmetry)
 - 2. Probe lift-off
 - 3. Scan resolution
 - 4. Measurement noise (variability)
 - 5. Classification algorithm design
 - B. Part geometry, material and condition:
 - 1. Outer layer surface condition (paint)
 - 2. Layer thickness
 - 3. Fastener type
 - 4. Fastener / hole geometry (asymmetric gap / fit)
 - 5. Proximity of adjacent fasteners and edges
 - C. Flaw characteristics:
 - 1. Flaw dimension and aspect ratio
 - 2. Flaw orientation (around fastener site)
 - 3. Flaw condition (partial closure, residual stress)

Models unknown - determine empirically variable – can address using classifier known unknown - determine empirically known

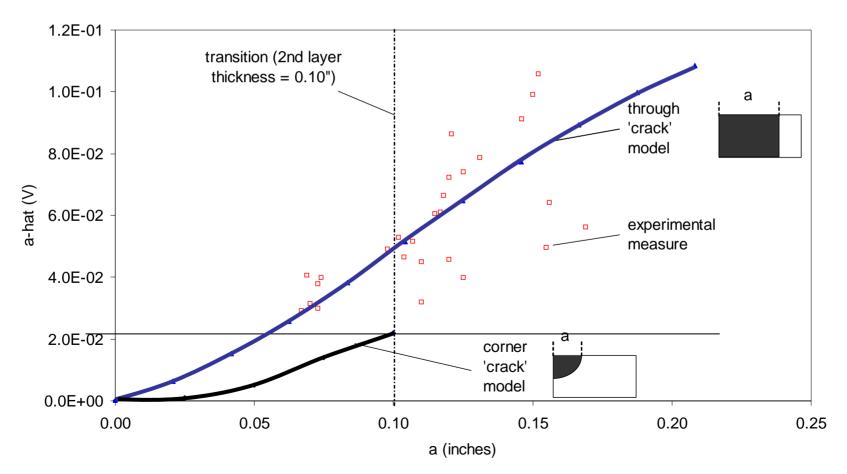

unknown - determine empirically known known variable – can address using classifier known

unknown – apply expert opinion unknown – apply expert opinion unknown – not addressed in this study

- 6. Conduct flaw signal distribution simulations and noise signal distribution simulations
- 7. Acquire remaining information on factors empirically
- 8. Acquire marginal information on independent factors (average and variance of stochastic variable)
- 9. Acquire covariance information on dependent factors

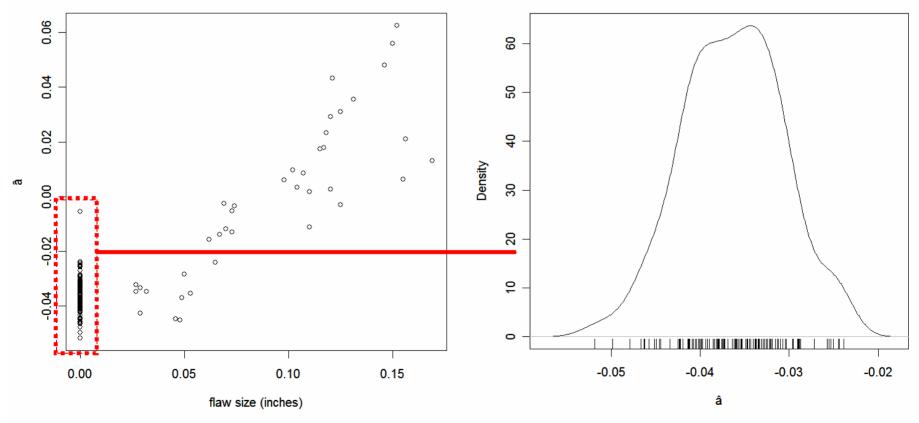

- 10. Combine 6, 8 and 9 into full signal and noise distributions
- Plan to Address FMA Protocol Steps 6-10 in Demonstration:
- A. Use Calibration Procedure to Characterize Probe (probe response)
- B. Perform Simulated Studies (flaw dimension and aspect ratio, probe liftoff) [transfer function approach: scan resolution, layer thickness, fastener type]
- C. Perform Empirical Evaluation (measurement noise, surface conditions)
- D. Address Factor Variation with Algorithm Design (liftoff, geo. asymmetry)
- E. Use Expert Opinion and Some Empirical Data to Estimate Variation Due to Unknown Factors (flaw aspect ratio, partial closure, residual stress)

Probe Characterization

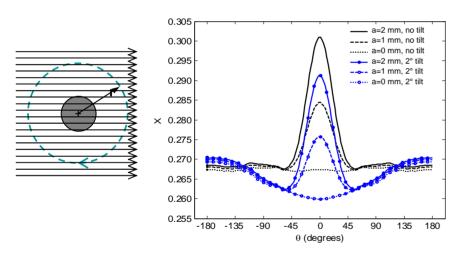

- A. Use Calibration Procedure to Characterize Probe (probe response)
- Model fit with experimental data
- Based on fit of response for titanium fastener site
 - X: in-phase component

Knopp, Aldrin, and Misra "Considerations in the Validation and Application of Models for Eddy Current Inspection of Cracks around Fastener Holes" Accepted for Publication – Journal for Nondestructive Evaluation, Vol 25 Issue 3

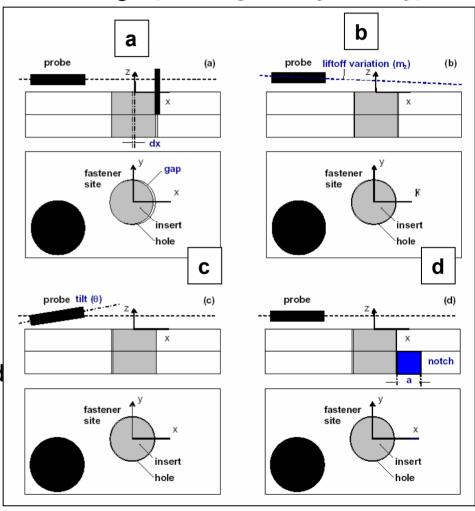
- B. Perform Simulated Studies (flaw dimension and aspect ratio, probe liftoff, scan plan, layer thickness, fastener type)
- Compare Simulated and Experimental Results



- C. Measurement of noise and surface conditions on regions without cracks
- Evaluation of Noise Distribution



Include Typical In-Field Measurement Variables

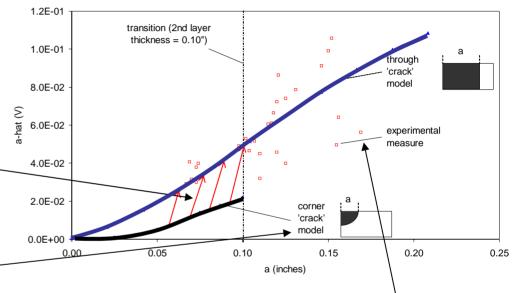


D. Address Factor Variation with Algorithm Design (liftoff, geo. asymmetry) Use noise invariant features in circumferential direction (using 2D interpolation algorithm)

- 'Localized Gaussian' response associated with crack
- Can be distinguished from 'sinusoidal' response associated with all three 'non-flaw' conditions

Aldrin and Knopp "Crack Characterization method with Invariance to Noise Features for Eddy Current Inspection of Fastener Sites" Submitted for Publication – Journal for Nondestructive Evaluation, Sept 2005

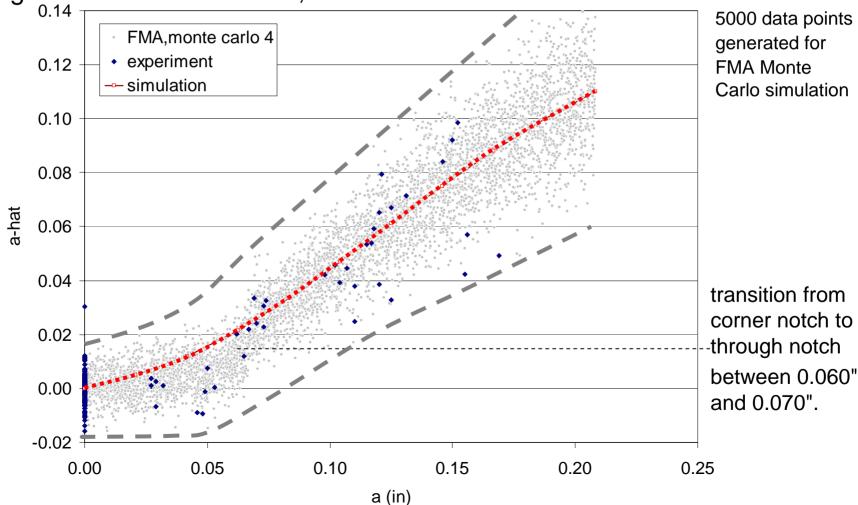
Opportunities for Improvement: Estimate of Unknowns



- Use Expert Opinion and Some Empirical Data to Estimate Variation Due to Unknown Factors
- **Opportunities for Improvement:**
- Corner Crack Model Where is the transition from corner to through cracks? —
- 2. Aspect Ratio Variation What is expected range for aspect ratio of corner cracks?
- 3. Equivalent Crack Size Factor

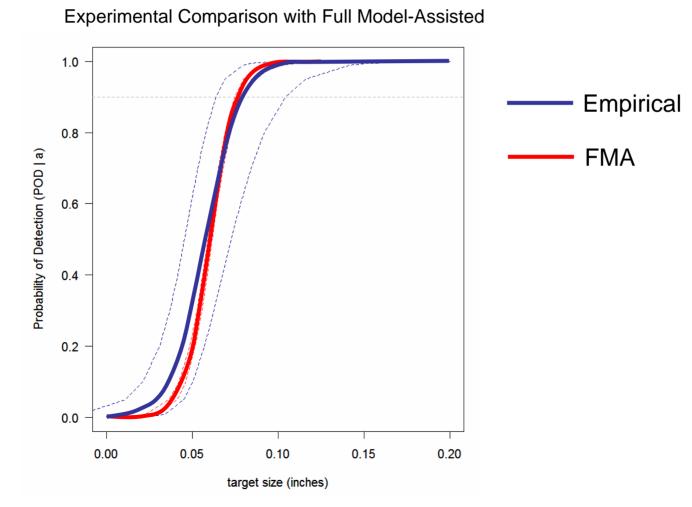
What is the equivalent size distribution for partially closed cracks? Does the distribution (variance) vary linearly with crack size OR Is there a fixed flaw size correction factor?

What is the shape of the response distribution? (Gaussian, Weibull)


More basic research needed to address unknowns (e.g. crack morphology)

10. Combine full signal and noise distributions

Through + corner notch model, variation function of flaw size


- Hit/Miss analysis
 - Probability of detection related to flaw size
 - Different cracks of the same size have different responses
 - Factors other than size influence detection capability
 - Non-constant variance being addressed for a vs. â
- Confidence Bounds Estimation (1823 Update)
 - Wald Method is anti-conservative.
 - Likelihood Ratio is a more accurate alternative to Wald method.

Successful Result Demonstrates Feasibility

- 11. Compute POD / POFC
- Calculate POD for threshold set to probability of false call of 0.50%

Conclusions

- Good match with experimental POD and Hybrid FMA
- Only required *unflawed samples* for Hybrid FMA demonstration
 - calibration of probe
 - noise evaluation
- Improved modeling and knowledge of flaw conditions (aspect ratio, partial closure) will improve results
- Can now demonstrate transfer function approach for:
 - varying fastener diameter
 - varying thickness of multiple layers
 - varying crack location (around fastener)
 - varying scan plans (resolution)
 - varying probe designs
 - new classifiers

- Confidence bounds for model-generated data needs research
- Cracks in between fastener hole sites (address with models)
- Crack Morphology
- Multiple cracks around fastener hole
- Uncertainty Analysis for XFN and FMA Methods
- Non-constant variance for a-hat measure
 - with respect to increasing flaw size,
 - likely due to crack contact conditions (i.e. not present for small / no flaw cases)