

Structural Maintenance Information Management System (SMIMS)

2007 ASIP Conference Palm Springs, CA

December 06, 2007

Improved Risk Analysis through Data Management

Development and Implementation of the Structural Maintenance Information Management System (SMIMS)

Funded by FY06 Congressional Add via ASC/AESS PE Lt Col Scott Fawaz – USAF PM

Co-Authors:

Mr Tim Allred - 558 ACSG/ENI

Dr Paul Clark - 558 ACSG/ENI

Mr Jim Suzel - S&K Technologies Inc

Mr Michael Stuerman - S&K Technologies Inc

SMIMS Objectives

SMIMS focus is on capturing ASIP related data with emphasis on inspection and repair data

The A-10 was selected for the pilot project based on ASC/EN input

Objectives:

- Improved data collection, improved quality and integrity of data, and data relationships
- Improved data flow and data access, automated formatting for risk (PROF) type analyses and comparisons to DTA (AFGROW)
- Facilitate ASIP analyses, fleet management decision making

Methodology

- Develop data capture requirements with Sustainment Analysis group and ASC/EN
- Identify and Review capability of currently used engineering databases at Hill AFB
- Summarize existing best practices and document A-10 data shortfalls based on new MIL-STD-1530C requirements
- Identify all stakeholders and establish contact
- Develop alternative solutions & present recommendations to PM and customer

Principle Data Requirements

- Crack Lengths at Fatigue Critical Locations
- Location and severity of corrosion and other damages (material removal)
- Frequency of damage occurrence and repairs employed

Putting Data to Work

AFGROW

A-10 SMIMS

A-10 ASIP MX Depot Maintenance Data Source Review

As-Is State

MX Data Collection

Leverage Successful Processes to Minimize Risk

Project Structure/Strategy:

Requiremen Developme	\ X Uroaram	n Software Programming Hardware Purchases	Program & Verification Beta testi	**************************************
Identification of	Design mock-up	Program software	Install software &	Generate training
stakeholders	interface and share		hardware in test	material & perform
	with users	Research	environment	training
Definitions of current		requirements, obtain		
and new processes	Design & layout	concurrence from	Conduct Beta test of	Install software and
	program structure	stakeholders and	the system and	hardware in
Data to be collected		order computers or	document problems	production
	Identify changes to	other hardware		environment
Database	current process and		Correct any system	
requirements	procedures	Internal program	problems	Air Force validation
		verification		& testing of system
Hardware	Start change		Verify software and	
requirements	documentation		hardware are operating correctly	

Software Development Strategy

- Make life easy on engineers and maintenance:
 - user friendly GUIs
 - flexible reporting
 - graphing of data
- Where possible design new software so that it can interact with either SQL or Oracle
- Make sure all new software is sustainable
- Software will be property of government and must be well documented
- Standardized data entry to facilitate data searches
 - Dropdown menus instead of text entry

SMIMS – Product Concepts

202/107 Supplemental Form

Data Input: SPO & Liaison Engineers

Data Retrieval: Analysis Engineers

Need:

202/107 structural damage and maintenance data inconsistently and incompletely captured to be of direct and optimal use to analysis engineers

Query & Report Tool

Data Retrieval: Analysis Engineers

Need:

Analysis engineers do not have a consolidated, user-friendly query tool for data extraction, manipulation, trending, and reporting

Electronic SLEP/SSI

Data Input: NDI & MX Personnel
Data Retrieval: NDI, MX, & Analysis
Engineers

Need:

Timely, consistent, and complete SLEP/SSI inspection, damage, and repair data is unavailable for analysis engineer use

Depot -3 Data Collection

Data Input: MX Personnel

Data Retrieval: MX Personnel &

Analysis Engineers

Need:

Analysis engineers have <u>no</u> visibility of Depot -3 structural damage and repair data (i.e. repair frequency, damage type, damage extent, etc...)

A-10 Wing Shop SMIMS Implementation & Support

Electronic SLEP/SSI Data Collection

S&KTECHNOLOGIES

A-10 Need

Timely, consistent, and complete Service Life Extension Program (SLEP)/Scheduled Structural Inspection (SSI), damage, and repair data is unavailable for direct and optimal use by analysis engineers.

FY07 Product Benefits:

- Provides a means for capturing <u>timely</u>, <u>consistent</u> and <u>complete</u> SLEP inspection, damage, and repair data in a standardized and searchable format for simple retrieval by analysis engineers
- Eliminates the transcription work engineering performs to place paper SLEP log data into useful electronic form
- E-SLEP screens identify and provide a means for capturing additional key structural data required by analysis engineers
- Identifies the data source (method of measure) to assess the data quality

Electronic Depot -3 Structural Data Capture

A-10 Need:

Analysis engineers have no visibility of Depot -3 structural damage and repair data (i.e. repair frequency, damage type, damage extent, etc...) for use in individual aircraft and fleet wide structural health assessments.

FY07 Product Benefits:

- Provides a means for capturing <u>timely</u>, <u>consistent</u> and <u>complete</u>
 Depot -3 damage and repair data in a standardized and searchable format for simple retrieval by analysis engineers which would otherwise be unavailable
- Data provides more complete visibility of individual aircraft and fleet wide structural health in the full context of Form 202 and ACI SLEP inspections, damage and repairs
- Near "real time" visibility of aircraft condition allows for faster engineering dispositions and improved maintenance planning which will permit faster and more consistent throughput of aircraft, wings and other commodities

Work Control Document Mods

- 143 WCD require addition of one or more SMIMS data collection statements
 - Submitted to A-10 Wing Shop Planning supervisor
 - Modifications on a "best effort" basis
 - 105 WCD identified as higher priority for modification

Typical Work Flow

- Most WCDs require 2 or more SMIMS instruction statements
 - Inspection Function
 - Document inspection findings on SLEP 1 (SMIMS) inspection data form
 - Repair Function Prior to Repair
 - Measure and document initial size data of holes on SLEP 1 (SMIMS) Inspection data form prior to repair
 - Repair Function Post Repair
 - Measure and document final size data of holes and method of repair on SLEP 1(SMIMS) inspection data form after accomplishing repair

TO Repair Damage Input Screen

TO Repair Damage Input Screen

-3 Repair Log			
Today's Date: 10/10/2007	Component: LH Wing Outer Panel V	Work Control Document Number:	ITN: 121212
Discrepancy Location Serial Number: 00B6201212L	Discrepancy Location: Skin Upper Skin	WS: 120 to 122 Distance from: Aft Spar in the Please Select d Hole Affected (if applicable) Common to: Please Select Annotate Damage Location: lower surface of upp	irection (in) 4.5
Discrepancy Discrepancy Type: Corrosion		Corrosion Data Length (inches):	Width (inches):
Damage Description		Attachments Description:	Browse
Save Progress		Description: Description:	Browse

TO Repair Data Input Screen

Discrepancy	
screpancy Type: rack	Crack Data
Talk	Crack Type: Surface Crack
	Crack Size: 0.33
	Orientation:
Damage Description	
Repair Data	
202 Generated	☐ Work Completed
Doubler	TO Number: Repair Figure Number:
O Grind Out Replace Part	1A-10A-3-1 V 5-27
Oversize Fastener Other	
O Bushing	
Repair Description	Attachments
Installed two 8.0" long, .071 thick 7075-T6 angle doublers with	
3/16" hi-loks IAW -3-1 TO.	Description:
	@ Browse
	Description:
	Ø Browse
	Description:
<u>~</u>	

Hurdles - Cleared

If reliable data collection was easy, SMIMS would have implemented long ago

Misconceptions & Established Business Practice Monuments

IT NDAA & Security Protocol Compliance

Stakeholder Acceptance, Integration & Arbitration

A-10 Wing Shop IT Infrastructure Preparation

Impact to the A-10 SPO and AF

- ASIP mangers and analysts will have visibility to critical repairs and can track damage trends
- Maintenance personnel and planners can anticipate workload on incoming aircraft or commodities
- Uniform capture of detailed repair data will enable AF to anticipate fleet problems in time to mitigate risk through increased inspections and structural modifications.

Migration to other Weapon Systems

- Any data collection system cannot be built as 'one size fits all' application
- Each weapon system is unique and any data collection system must dovetail into existing processes and infrastructure
- Buy-in by all stake holders is paramount
- Data quality and relevance to ASIP analysis is the key
- SMIMS in part or in whole can be tailored to meet the MIL-STD-1530C requirement needs for other aircraft systems

Acknowledgments

The following people contributed immeasurably to the SMIMS project:

- Kara Brockman, SKT
- Michael Stuerman, SKT
- Andy Hinkle, SKT
- Brad McKain, SKT
- Jill Ullett, SKT

- Alex Litvinov, LexTech
- Marion Long, 574 AMXS/MDPB
- Ian Richardson, 574 AMXS/MDPB
- Danny Andersen, 508 ACSS/GFEAF
- Joe Gallagher, ASC/EN (retired)

For more information contact: James J. Suzel S&K Technologies, Inc. 3139 Research Blvd. Suite 101 Dayton, Ohio 45420

Phone: 937-781-2316 Fax: 937-781-2330

Receptionist: 937-781-2300 e-mail: jsuzel@sktdayton.com