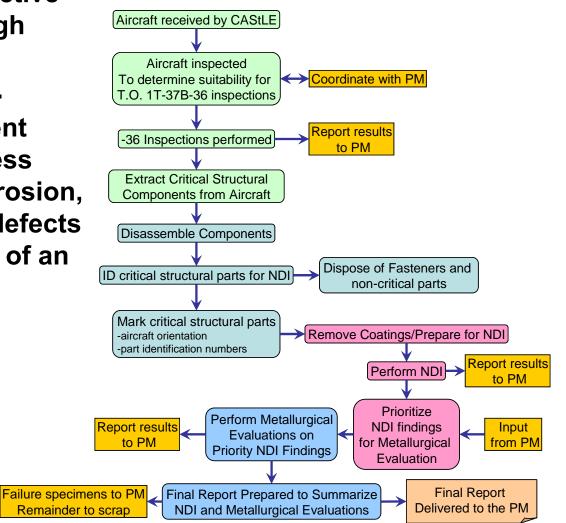
Center for Aircraft Structural Life Extension

Providing Structural Integrity Technology to the Aerospace Community

FY06 T-37B Teardown Analysis Program Results and Fleet Impact

Gregory A. Shoales, CAStLE John B. Pendleton, T-37 Chief Engineer/ASIP Manager Sandeep R. Shah, CAStLE

RESEARCH



- Program Overview
- Program Subjects
- NDI Indications
- Findings
- Database
- Teardown Conclusions & Recommendations
- Fleet Impact

- Conduct a T-37B destructive teardown analysis of high flight hour wings and carry-through structure.
- Investigate and document evidence of fatigue, stress corrosion cracking, corrosion, and any other damage/defects that might result in loss of an aircraft during normal operation.

Providing Structural Integrity Technology to the Aerospace Community

RESEARCH

Teardown Subjects

43.5

2 ship sets

- Included portion of carry through structure
- Outboard half of wing removed

- Entire wings
- No carry through
- Documented service & mod history

RESEARCH

0

VIEW LOOKING DOWN

WING STRUCTURE

 $d \cap O$

T.O. 1T-37B-36 Inspection

Visual indication on upper aft spar cap

Part Level NDI Indications/Evaluation Prioritization

	ND	I Indica	tions	Evaluations Completed					
SN	Left	Right	Total	Left	Right	Total	Percent		
57-2297	46	40	86	34	21	55	64%		
67-2243	102	72	174	39	39	78	45%		
67-2257	32	34	66	23	24	47	71%		
68-8071	64	39	103	64	39	103	100%		
Sums	244	185	429	160	123	283	66%		

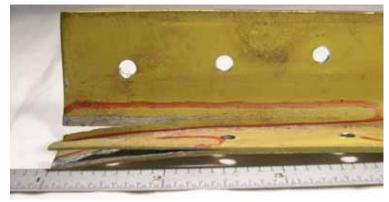
NDI accomplished by Dan Laufersweiler, AFRL/RXSA

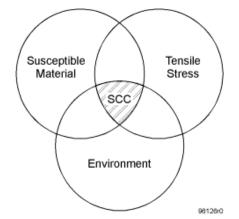
- Mechanical damage—41 findings
 - Scratch or deep gouge in hole bore
 - From manufacturing, disassembly, maintenance
 - Possible site to initiate continuing damage
- Material defect—1 finding
 - From porosity or hard inclusions
 - Also possible continuing damage site

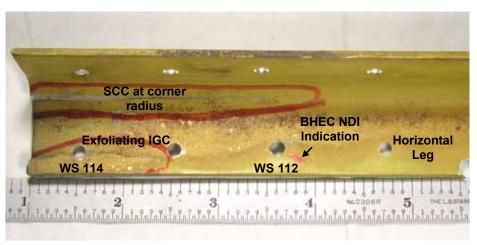
- Environmentally assisted cracks/defects
 - Exfoliation corrosion—9 findings <---</p>
 - Stress corrosion crack (SCC)—1 finding <---</p>
 - Intergranular corrosion—12 findings
 - Deep hole bore pitting—6 findings
- Forward spar cap fatigue cracks (18 findings) <---</p>
- Rib cap fatigue cracks—14 findings
- In-plane cracks—27 findings
- Surface corrosion—125 findings

Operational Damage Finding

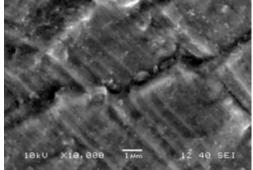
Visual indication left upper aft spar cap of 1 aircraft


- Failure analysis finding
 - Exfoliation corrosion
 - Maximum of 47% thickness loss over 0.38 in²
 - Additional severe corrosion nearby




Operational Damage Finding aft spar SCC

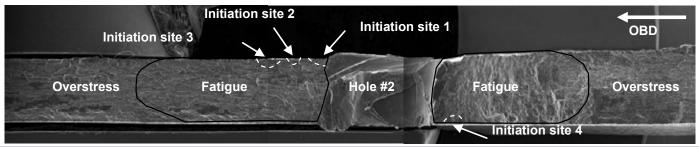
- 2.9 inch through crack
- Spar Cap Material: AA7075-T6
- Sustained Tensile Stress
 - Normal load bearing of spar cap
 - Evidence of residual stress

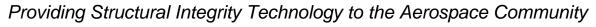

- Environment
 - Pooled water
 - Dark stains on spar caps observed on all aft spar caps

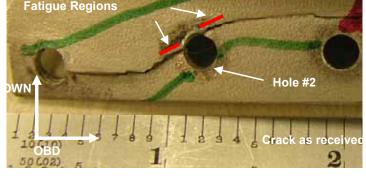
Operational Damage Finding forward spar cap fatigue cracks

- Location: thin vertical leg which connects to spar web
- 18 findings at this location
 - 17 fatigue findings
 - **Each with small fatigue region**, \leq 0.5 in
 - Final extension from overstress

One additional finding of overstress cracking only






- Specific initiation locations
 - Radius between thick and thin vertical leg
 - Fastener holes
 - 2:00 and 8:00 left wing
 - 5:00 and 11:00 right wing

Fractography

- Multiple surface initiation sites
- Cracks propagate in thickness direction
- Out of plane loading—8 to 13 ksi√in
- Due to relative motion between spar caps?

- Surface corrosion—125 findings
- Exfoliation corrosion—9 findings
- Overall Results
 - Thickness loss: less than 1% to 54%
 - Area affected: 0.001 to 3.6 in²

Database in Microsoft[®] Office Excel 2003 format

All indications

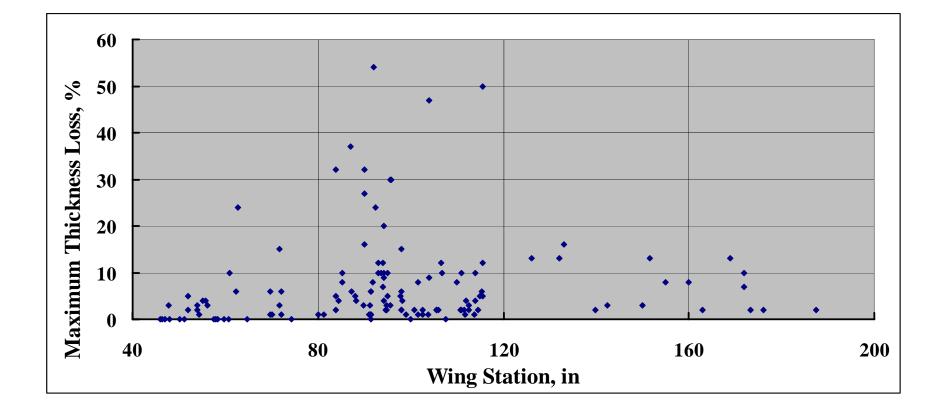
Indication location and NDI details

Links to macro photographs

Indication											Indication Type		
	Part												
A/C SN	P/N	Nomenclature	Ref	Туре	WS/BL	FS	Ship Side	Zone	Facing	Macro Figure(s) link	Source	Orientation	%FSH
57-2297	4022036-701	Spar Cap - LWR - AFT	67-2257	Spar Cap	101.5	167	LH	Vert	AFT	SN57-2297\DSCN5669.JPG	FPI		
57-2297	4022036-701	Spar Cap - LWR - AFT	67-2257	Spar Cap	94	167	LH	Horz	AFT	SN57-2297\DSCN5668.JPG	FPI		
57-2297	4022202-1 (3of6)	Rib Cap - FWD - UPR	-4, Fig. 30-?	Rib Cap	71.75	144	LH	Vert		SN57-2297\DSCN5688.JPG	EC FPI	9:00	100
57-2297	4022426-5 (7of8)	Rib Cap - UPR	-4, Fig. 30-91	Rib Cap	91.5	141	LH	Horz		SN57-2297\DSCN5686.JPG	FPI		
57-2297	4022426-5 (7of8)	Rib Cap - UPR	-4, Fig. 30-91	Rib Cap	91.5	141.75	LH	Horz		SN57-2297\DSCN5686.JPG	EC	5:00	100
57-2297	4022036-701	Spar Cap - LWR - AFT	67-2257	Spar Cap	51	167	LH	Horz	AFT	SN57-2297\DSCN5667.JPG	EC	1:00	30
57-2297	4022035-1	Spar Cap - LWR - AFT	67-2257	Spar Cap	46.5	167	LH	Vert	FWD	SN57-2297\DSCN5655.JPG	EC FPI	9:00	35
57-2297	4022035-1	Spar Cap - LWR - AFT	67-2257	Spar Cap	90.25	167	LH	Horz	FWD	SN57-2297\DSCN5656.JPG	EC FPI	8:00	75
57-2297	4022986-501	Spar Cap - LWR - FWD	67-2257	Spar Cap	46	130.5	LH	Vert		SN57-2297\DSCN5662.JPG	EC	3:00	100

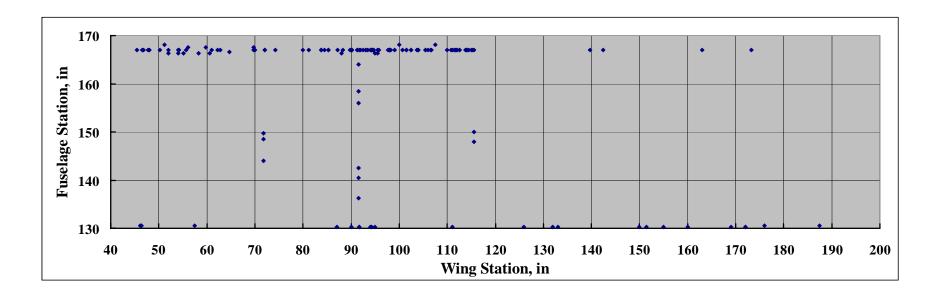
Key <u>finding data</u>

Evaluation Finding										
	Dimensions (in)			Corrosion Dimnesions			Faying Side			
Туре	С	а	b	max	%thick loss	Area (sq in)	Through Crack	Nucelation?	Report File Link	
surface corrosion					8	0.283			corrosion grind-out measurements only	
surface corrosion					7	0.0552			corrosion grind-out measurements only	
fatigue crack	2.1	0.063		2.1			Y	ukn	SN57-2297 L RC FWD UPR FS144	
fatigue crack	1.72	0.063	0.003	1.72			Y	unk	SN57-2297 L RC UPR FS141	
fatigue crack	0.024	0.02		0.024			N	Y	SN57-2297 L RC UPR FS142	
no defect									SN57-2297 L SC AFT LWR AFTSIDE WS51	
in-plane crack	0.059		0.0113	0.059			N	N	SN57-2297 L SC AFT LWR FWDSIDE WS46	
IG crack	0.021	0.028	0.04	0.04			N	unk	SN57-2297_L_SC_AFT_LWR_FWDSIDE_WS90	
unknown							N	Y	SN57-2297_L_SC_FWD_LWR_WS46A	


Searchable via standard Excel tools

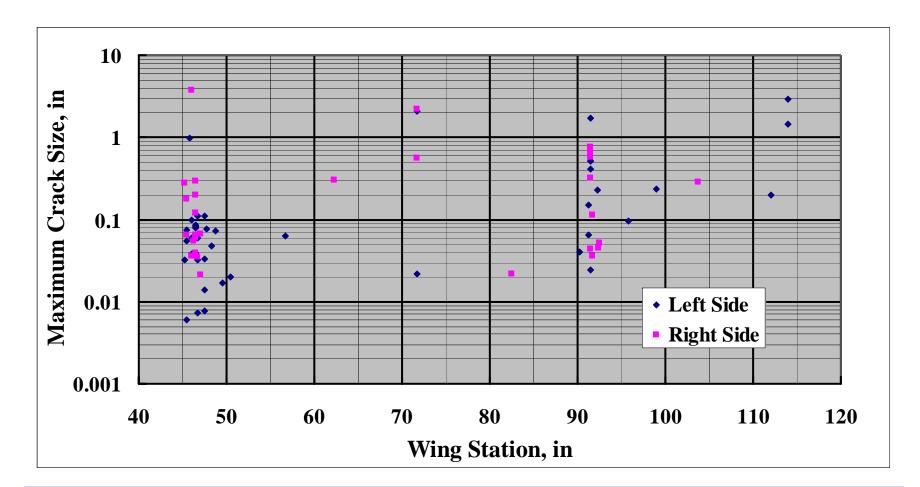
- Query tables, specific graphs
- Can be imported into most database software

Providing Structural Integrity Technology to the Aerospace Community


RESEARCH

Database

query example: corrosion FS vs. WS location



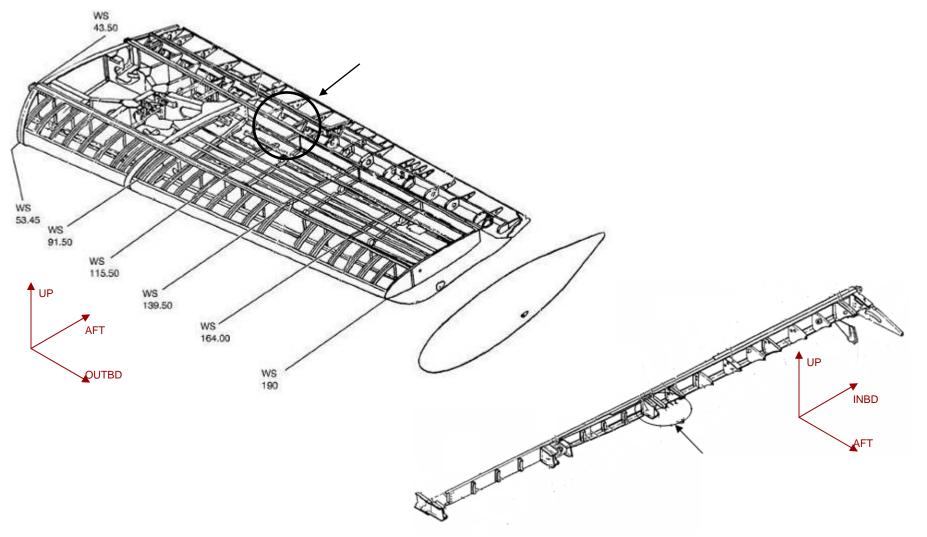
query example: crack size vs. WS location

Database

Most complete inspection of T-37B structure to date

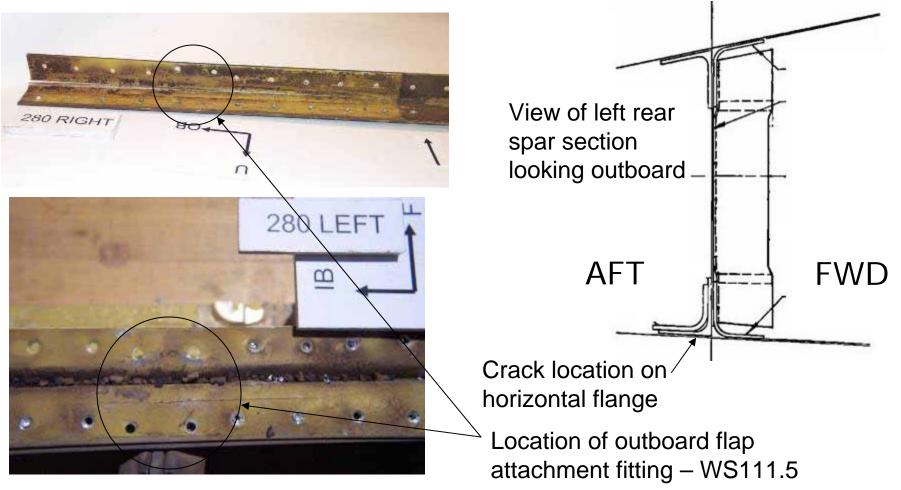
- 4 wing sets
- 429 NDI indications
- 283 detailed metallurgical evaluations
- Data used with other sources for fleet management
- Findings at DTA locations
 - Compare to predictions
 - Assess the validity of those predictions
- Corrosions findings
 - Evaluate impact to structural strength
 - Evaluate corrosion prevention and control program

- Indications from TO 1T-37B-36 inspections
 - Data to help assess inspections
 - Actual results compared to indication
- Compare to findings from FY07 program



Fleet Impact

Fleet Impact lower rear spar cap



Fleet Impact lower rear spar cap

OGDEN AIR LOGISTICS CENTER

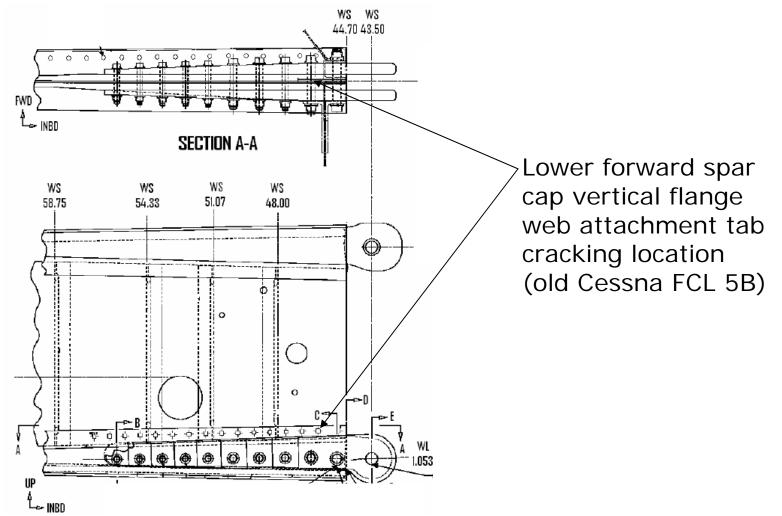
BE AMERICA'S BEST

- Spanwise cracks in the Lower Rear Spar Cap Aft Extrusion Angle (AL 7075-T6 Alloy) between WS105 and WS117
 - Failure analysis and fractography determined cause of crack to be STRESS CORROSION (SC)
 - No past projects (202's, 107's, etc.) found dealing with cracking in this area – We've never inspected in this area before
- FY05 Wing Teardown inspected 4 high time wings
 - L/H Crack approx. 12" (centered on flap fitting attachment)
 - R/H Crack approx. 6" (centered on flap fitting attachment)
 - Sheppard AFB
- FY06 Wing Teardown inspected 4 high time wings (3 included area of interest)
 - L/H Crack approx. 3" (at outboard end of extrusion)
 - Randolph AFB

- Presence of SC Cracks and Crack Growth Rates are difficult to predict
 - Influence of time on crack presence/growth is small one aircraft had ~22000 hrs, the other had ~16000 hrs
 - SCC is not flight hour dependent (there is a time component)
 - Analysis shows a 21 inch SC crack could cause buckling failure
 - Probability is unknown but could be high
- Important to have data
 - Thought it was primarily influenced by flap fitting
 - Additional data showed the fitting was not primary driver
- Presence of SC cracking in this area among the rest of the fleet is unknown
 - Being treated as a fleet issue 2 out of 7 planes
- It is possible that the stress corrosion crack could turn and become a fatigue crack
 - Probability is very small but unknown
- Engineering analysis shows a fatigue crack inboard of WS108 could result in separating a portion of the spar cap
 - Long crack growth life ~10,000 hrs, to be updated with new DTA FY08

- X-Ray Inspection
 - Will be able to see under splice without disassembly
 - Process already validated/verified for FY06 ACI
 - 2.75 hr duration
 - Further val/ver completed on wing section with cracked piece built in minor mods to process/instructions
 - Done because of suspected POI/POD issues
- Surface Eddy Current
 - Surface Eddy Current inspection of spar cap inboard of Splice Overlap (WS105.75) – EC will catch cracks longer than 11"
 - Flap off
 - 1.25 hr duration for disassembly, inspection, reassembly, flap control check
 - Hill NDI did Val/Ver of the inspection process in August '06 at Sheppard AFB
 - Better POI/POD

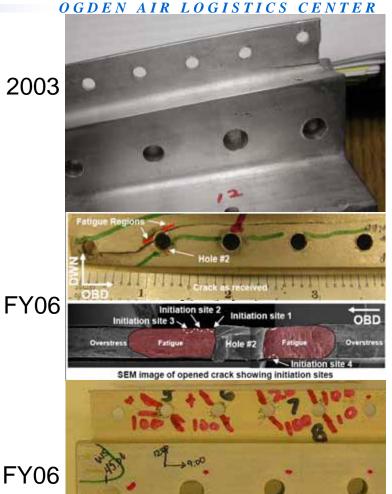
Inspections


- FY06 Analytical Condition Inspection (ACI) of 6 A/C
 - No findings
- Additional recurring -6/-36 TO inspection at next/each PE (500 hrs)
 - No findings to date (large percentage of fleet inspected)

Data Collection

- Entire fleet will be inspected by end of CY07
- 107 process if more cracks found Repair developed
 - Move to TCTO for inspection of entire fleet within 3 month time period

BE AMERICA'S BEST



Fleet Impact lower forward spar cap

One crack found on 2003 teardown

- Also showed up in fatigue tests
- Found on all planes in FY06 TD and one in FY07 TD
 - 6 out of 12 planes fleet issue
- Area not inspected in the past
- Cannot be accessed from the leading edge side
- Can be accessed for inspection by eddy current with difficulty from small access panel in landing gear bay
 - Routing of multiple tubes increases difficulty

Fleet Impact lower forward spar cap

- Result of Web shear load being transferred into fastener bearing & tension of thinner section of vertical flange at attachment holes and fillet radius
- Possibly a self arresting crack as it approaches the thicker section of the vertical flange
 - Two wing fatigue tests cracked at this location (~1988)
 - Crack grew to 4 inches and arrested at second web stiffener
 - FY06 teardown crack is identical to this
- Crack could turn vertically to sever the spar cap
 - Analysis shows positive margin for redundant load path through SLEP steel wing attachment fittings if spar cap should crack vertically
 - Crack propagation life is long -- ~30,000 hrs new DTA w/ FY08 funding
- Additional fleet wide inspection at next/each 500 hr PE
 - Eddy current around first 4 fasteners and in fillet radius from aft side through access panel in landing gear bay – 1 hr
 - Crack could be detected from the front side once it reaches the radius transition into the thicker section
 - Inspection interval to be modified after new DTA

- Wing spar corrosion is a major issue
 - Rear Spar is primary location
 - Material load-bearing cross-section loss
 - Developing new visual inspection requirement
 - Should only require removal of 3 access panels
 - New fleet wide inspection at next/each 500 hr PE
 - Findings may require repair or replacement
 - Significant corrosion findings from FY07 teardown
 Material loss not as severe as on FY06 teardown
 - FY07 Teardown revealed a new FCL at aft banjo fitting empennage attachment to fuselage

- Conclusions and Recommendations
 - Destructive Teardown Inspections are critical for safe fleet management through to retirement
 - Need to examine various locations repeatedly and comprehensively to get breadth and depth of data
 - Based on findings, DTA, Risk Assessment:
 - Update active FCLs add and possibly remove
 - Implement new inspections
 - Modify existing inspections
 - Both methodology and intervals
 - Corrosion is a major issue with potential for significant reductions in load-bearing capability
 - Prevention, Inspection, Control, Repairs

Questions?