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Susceptible 
Material

Types of 
Damage:

Cracking
Corrosion
Fretting

FOD

Tensile Stress
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Damage/Failure Susceptibility Diagram

Residual Stress Approach: 
“Mechanical Suppression” of Tensile 

Stresses – No need to change 
material/design & Improved damage 

tolerance

Damage Prevention, 
Detection & Control 

Approach:
• Use Protective Coatings
• Inspect for FOD, Cracks
• Repair, Blend Damage
• Replace Parts

Materials Approach:
Develop new, 

tougher, damage 
resistant alloy
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Outline
• Residual Stress Design Method
• LPB Process

– Technology
– Tools
– Design Protocol
– Production and Turnkey Installation

• Example of LPB to Mitigate Fatigue/Pre-Cracking 
Damage in AA2024-T851 Aircraft Structures

• Conclusions
• List of Current LPB Applications
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RESIDUAL STRESS
DESIGN METHOD
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Residual Stress Design Method
• RS Design based on FDD (Fatigue Design Diagram –

Lambda Patent Pending)

• FDD is a novel adaptation of Haigh Diagram

• SWT model is used to extend Haigh Diagram into     
compressive mean stress regime

• Neuber’s kt or kf is used to account for damage

• Predicts RSmin to restore performance and RSmax to 
enhance performance

• RS optimization based on other design factors like part-
distortion, location/magnitude of compensatory tension, 
etc.
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Residual Stress Design Method
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LPB 
PROCESS
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•High-hardness ball is rolled, under pressure, over surface
•Single pass provides deep compression 
•Patented hydrostatic bearing with constant volume flow
•Low cold work provides stable compression

LPB Technology
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Single Pass FEA Model of LPB Process Showing the 
Development of Surface and Subsurface 

Compression
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LPB Tool Technology

LPB 
ball

LPB 
ball

Blade 
edge

LPB ball

Work 
Piece

Single-Point Tool for 
thick pieces or one-
sided application

Caliper Tool for thin 
pieces, providing through 
thickness compression

Through-thickness compression 
in compressor blade LE

Disk slot tools and inside calipers for ID bores built in 2006
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LPB Causes No Surface Damage

• No metallographically  
detectable damage at 
500x

• Improved Surface 
Finish <10 μin.

• Finish varies with LPB 
parameters: force, feed, 
ball type and size.

Parallel to lay  500x

Perpendicular to lay  500x

LPB Generated Surface in IN718
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Residual Stress Stability

• Thermal Relaxation
– Cold work increases dislocation density 
– High dislocation density increases both rate and 

amount of relaxation

• Overload (Mechanical) Relaxation
– Cold work creates yield strength depth gradient 
– Subsequent deformation is not uniform

• Cyclic Relaxation
– Not significant in HCF at R = Smin/Smax > 0

Low Cold Work = Stable Compression

Fatigue benefit is lost if residual compression relaxes.
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Total Engineering Solution: Ti-6-4 Vane

Providing Total Solutions

For Fatigue & Stress Corrosion Cracking
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LPB Production

• Machining-like operation using typical CNC machine tools or robots
• Highly automated…minimal operator intervention
• Low capitalization costs…use existing CNC machines
• Shop floor compatible…no specialized facilities

Hydraulic 
Cabinet

LPB 
Control

CNC 
Control

LPB Tool LPB ControlCNC ControlLPB Tool

Mazak Quick Turn 6T LatheHaas VF3B MillFanuc S420W Robot

6-axis 4- and 5-axis 3-axis
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LPB MITIGATES FATIGUE 
AND PRE-CRACKING 

DAMAGE IN AA2024-T851



Information Proprietary to Lambda

18Mitigation of Fatigue and Pre-Cracking Damage Through LPB - ASIP2007

Objective of the Test Program

To mitigate pre-cracking and fatigue 
damage through low plasticity burnishing 

(LPB) treatment in AA2024-T851 parts 
simulating two different features of 

airframe structure



Information Proprietary to Lambda

19Mitigation of Fatigue and Pre-Cracking Damage Through LPB - ASIP2007

PART DESIGN, FATIGUE TEST 
ARTICLES AND VARIABLES
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Part A (Complex)
• Material: Al 2024 T851
• Loading (uniaxial) – Two load cases

1. Design stress: Constant amplitude, Max stress 11.4 ksi (approximately 
30,000 cycles to failure)

2. 10% over design stress: Constant amplitude, Max stress 12.5 ksi  
• R = 0.01 (ratio of min to max stress)
• Pre-crack status (0.05 in.) = yes, no
• 3-6 repetitions per test case

4”

12”

0.10” thick

Max Stress in X-direction +72 ksi

Part A – Applied Stress @ 4500 lb Uniaxial Load
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Part B (Simple)
• Material: Al 2024 T851
• Loading (uniaxial) – Two load cases

1. Design stress: Constant amplitude, Max stress 11.5 ksi 
(approximately 30,000 cycles to failure)

2. 10% over design stress: Constant amplitude, Max stress 12.5 ksi  
• R = -1 (ratio of min to max stress)
• Pre-crack status (0.05 in.) = yes, no
• 3-6 repetitions per test case

4”
12”

0.12” thick

AXIAL APPLIED STRESS FOR 11 KSI FAR FIELD
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RESIDUAL STRESS 
DESIGN, 

IMPLEMENTATION & 
MEASUREMENT
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Compressive RS is designed using Lambda’s 
FDD (Fatigue Design Diagram) method

Both controlled magnitude and depth of 
compression introduced at critical locations 
through LPB treatment

RS measured by x-ray diffraction method
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LPB DESIGN – FDD METHOD
Compressive RS magnitude & locations to mitigate damage 

are determined by FDD (Fatigue Design Diagram)
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RESIDUAL STRESS 
MEASUREMENTS
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Residual Stresses – Part A (Complex)
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Residual Stresses – Part B (Simple)
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Summary of Fatigue Test Results

• Fatigue life of the smooth undamaged part 
was decreased by a factor of 20 due to 
0.050 in. precracking damage

• LPB improved fatigue life of smooth 
undamaged part by nearly a factor of 5

• LPB completely mitigated the precracking 
damage by restoring fatigue performance 
to that of a smooth undamaged part
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AA2024-T851 Structural Test Panel - Part A (Complex)
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AA2024-T851 Structural Test Panel - Part A (Complex)
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AA2024-T851 Structural Test Panel - Part B (Simple)
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Summary
• The magnitudes and locations of needed 

compressive RS were determined by the FDD 
(Fatigue Design Diagram) Method

• LPB treatment was designed to introduce the 
intended compressive RS into the locations 
chosen for Parts A and B

• RS distribution in the treated parts was 
verified by x-ray diffraction method
– In Part A (Complex) nominally uniform 

compressive RS of –30 ksi was achieved up to mid-
thickness at critical locations

– In Part B (Simple) nominally uniform compressive 
RS of –45 ksi was achieved up to mid-thickness at 
critical locations
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Summary (cont’d)
• Fatigue test results validated predictions

– LPB almost doubled the fatigue life of both smooth 
parts A & B

– In both Parts A & B, pre-cracks (0.05 in. long) 
reduced the fatigue life by nearly an order of 
magnitude

– In both Parts A & B, LPB fully restored the fatigue 
life of the pre-cracked (of length 0.05 in.) parts to 
that of smooth baseline parts

– The benefits of LPB were consistently evident at 
both stress levels of 11.5 and 12.5 ksi

– The benefits of LPB were consistently evident at 
both stress ratios (R) of 0.01 and -1


