Mitigation of Fatigue and Pre-Cracking Damage in Aircraft Structures Through Low Plasticity Burnishing (LPB)

N. Jayaraman, Douglas J. Hornbach, Paul S. Prévey Lambda Technologies Kristina Langer, Jeffrey Hoover, Scott Van Hoogan AFRL/VASM

> ASIP 2007 Palm Springs, CA December 4 – 6, 2007

Acknowledgement

LPB Design, Implementation, and RS Measurement Conducted at Lambda Technologies

Part Design and Fatigue Testing Conducted at AFRL

Damage/Failure Susceptibility Diagram

Outline

- Residual Stress Design Method
- LPB Process
 - Technology
 - Tools
 - Design Protocol
 - Production and Turnkey Installation
- Example of LPB to Mitigate Fatigue/Pre-Cracking Damage in AA2024-T851 Aircraft Structures
- Conclusions
- List of Current LPB Applications

RESIDUAL STRESS DESIGN METHOD

Residual Stress Design Method

- RS Design based on FDD (Fatigue Design Diagram Lambda Patent Pending)
- FDD is a novel adaptation of Haigh Diagram
- SWT model is used to extend Haigh Diagram into compressive mean stress regime
- Neuber's k_t or k_f is used to account for damage
- Predicts RS_{min} to restore performance and RS_{max} to enhance performance
- RS optimization based on other design factors like partdistortion, location/magnitude of compensatory tension, etc.

Residual Stress Design Method

LPB PROCESS

LPB Technology

High-hardness ball is rolled, under pressure, over surface
Single pass provides deep compression
Patented hydrostatic bearing with constant volume flow
Low cold work provides stable compression

Single Pass FEA Model of LPB Process Showing the Development of Surface and Subsurface Compression

LPB Tool Technology

Single-Point Tool for thick pieces or onesided application

Through-thickness compression in compressor blade LE

Disk slot tools and inside calipers for ID bores built in 2006

LPB Causes No Surface Damage

- No metallographically detectable damage at 500x
- Improved Surface Finish <10 μin.
- Finish varies with LPB parameters: force, feed, ball type and size.

LPB Generated Surface in IN718

Perpendicular to lay 500x

Parallel to lay 500x

Residual Stress Stability

Fatigue benefit is lost if residual compression relaxes.

- Thermal Relaxation
 - Cold work increases dislocation density
 - High dislocation density increases both rate and amount of relaxation
- Overload (Mechanical) Relaxation
 - Cold work creates yield strength depth gradient
 - Subsequent deformation is not uniform
- Cyclic Relaxation
 - Not significant in HCF at R = Smin/Smax > 0

Low Cold Work = Stable Compression

Compressive Stress Field Design Protocol

Designed Surface Enhancement

6-axis

4- and 5-axis

3-axis

- Machining-like operation using typical CNC machine tools or robots
- Highly automated...minimal operator intervention
- Low capitalization costs...use existing CNC machines
- Shop floor compatible...no specialized facilities

Turn Key Field Installation

LPB MITIGATES FATIGUE AND PRE-CRACKING DAMAGE IN AA2024-T851

Objective of the Test Program

To mitigate pre-cracking and fatigue damage through low plasticity burnishing (LPB) treatment in AA2024-T851 parts simulating two different features of airframe structure

PART DESIGN, FATIGUE TEST ARTICLES AND VARIABLES

Part A (Complex)

- Material: AI 2024 T851
- Loading (uniaxial) Two load cases
 - 1. Design stress: Constant amplitude, Max stress 11.4 ksi (approximately 30,000 cycles to failure)
 - 2. 10% over design stress: Constant amplitude, Max stress 12.5 ksi
- R = 0.01 (ratio of min to max stress)
- Pre-crack status (0.05 in.) = yes, no
- 3-6 repetitions per test case

Part A – Applied Stress @ 4500 lb Uniaxial Load

Max Stress in X-direction +72 ksi

Part B (Simple)

- Material: AI 2024 T851
- Loading (uniaxial) Two load cases
 - 1. Design stress: Constant amplitude, Max stress 11.5 ksi (approximately 30,000 cycles to failure)
 - 2. 10% over design stress: Constant amplitude, Max stress 12.5 ksi
- R = -1 (ratio of min to max stress)
- Pre-crack status (0.05 in.) = yes, no
- 3-6 repetitions per test case

RESIDUAL STRESS DESIGN, IMPLEMENTATION & MEASUREMENT

Compressive RS is designed using Lambda's FDD (Fatigue Design Diagram) method

Both controlled magnitude and depth of compression introduced at critical locations through LPB treatment

RS measured by x-ray diffraction method

LPB DESIGN – FDD METHOD

Compressive RS magnitude & locations to mitigate damage are determined by FDD (Fatigue Design Diagram)

RESIDUAL STRESS MEASUREMENTS

Residual Stresses – Part A (Complex)

Residual Stresses – Part B (Simple)

Summary of Fatigue Test Results

- Fatigue life of the smooth undamaged part was decreased by a factor of 20 due to 0.050 in. precracking damage
- LPB improved fatigue life of smooth undamaged part by nearly a factor of 5
- LPB completely mitigated the precracking damage by restoring fatigue performance to that of a smooth undamaged part

AA2024-T851 Structural Test Panel - Part A (Complex)

AA2024-T851 Structural Test Panel - Part A (Complex)

AA2024-T851 Structural Test Panel - Part B (Simple)

32

AA2024-T851 Structural Test Panel - Part B (Simple)

Summary

- The magnitudes and locations of needed compressive RS were determined by the FDD (Fatigue Design Diagram) Method
- LPB treatment was designed to introduce the intended compressive RS into the locations chosen for Parts A and B
- RS distribution in the treated parts was verified by x-ray diffraction method
 - In Part A (Complex) nominally uniform compressive RS of –30 ksi was achieved up to midthickness at critical locations
 - In Part B (Simple) nominally uniform compressive RS of –45 ksi was achieved up to mid-thickness at
 Critical locations

Summary (cont'd)

- Fatigue test results validated predictions
 - LPB almost doubled the fatigue life of both smooth parts A & B
 - In both Parts A & B, pre-cracks (0.05 in. long) reduced the fatigue life by nearly an order of magnitude
 - In both Parts A & B, LPB fully restored the fatigue life of the pre-cracked (of length 0.05 in.) parts to that of smooth baseline parts
 - The benefits of LPB were consistently evident at both stress levels of 11.5 and 12.5 ksi
 - The benefits of LPB were consistently evident at both stress ratios (R) of 0.01 and -1

