

A Computer Simulation of the Life of the Structures of a Fleet of Aircraft

A Life Cycle Risk and Reliability Model for Aircraft Structures

Arnold Anderjaska - Technical Data Analysis, Inc. USAF Aircraft Structural Integrity Program (ASIP) - 2007 6 December 2007

Reasons for a <u>Structural Area</u> <u>Inspection Frequency Evaluation</u> (SAIFE) Program

- Use of Aircraft Beyond Design Life
 Increases need for Good Risk Analyses
- SAIFE Program has Unique Capabilities

Why the SAIFE Model?

 Repeated requirement to prevent progressive type failures from fatigue and corrosion

• <u>Reasons</u>:

- 1. Design and Substantiation Criteria Changes
- 2. Correction of Service Problems
- 3. Establishment of Inspection Policies and Programs
- Decisions Based on Two Critical Factors:
 - 1. The probability of structural defects and catastrophic failure
 - 2. The burdens caused and alleviated by the proposed action

Why the SAIFE Model? (cont.)

- It is an impossible task to consider all the factors and variability's involved in predicting these two factors
- However, decisions have to be made and are made every day with only an implied prediction of these two factors without making a best estimate
- These decisions are based on the available analysis, tests, data and engineering judgment

Why the SAIFE Model? (cont.)

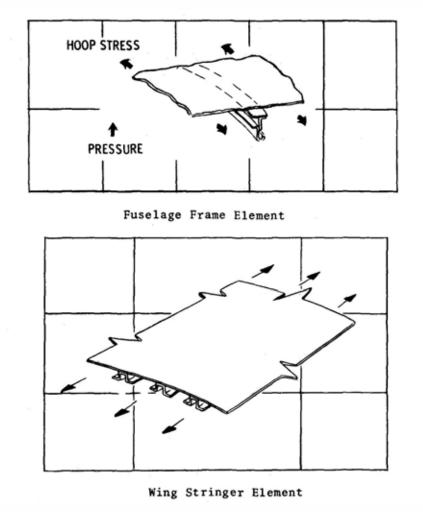
- Decision was made to develop a computer simulation that would quantify this engineering judgment and any resulting burdens
- Utilize all available information and resources to account for the significant factors in predicting these Two Factors
- Intended to Assist in the Evaluation of:
 - Possible actions on Old and Aging Aircraft
 - Detailed Criteria for the New Fatigue Rule
 - Proposed MSG-3 inspection programs
- To be realistic, all significant factors from design thru test, production, service and maintenance must be accounted for
- It must be recognized that this is a dynamic problem with feedback and response

SAIFE Simulation Model Accounts for the Following

- Design and Criteria Errors
- Test Schedule, Criteria, Errors and Results
- Production Schedule and Defects
- Service Usage, Schedule & Damage
- Corrosion and its Growth
- Fatigue Crack Initiation and Growth
- Inspection Changes & Modifications due to Service Experience
- The effect damage, corrosion and defects have on fatigue initiation and growth and residual strength
- Residual strength during damage growth is compared with the load exceedances to determine the probability of failure

Key Points

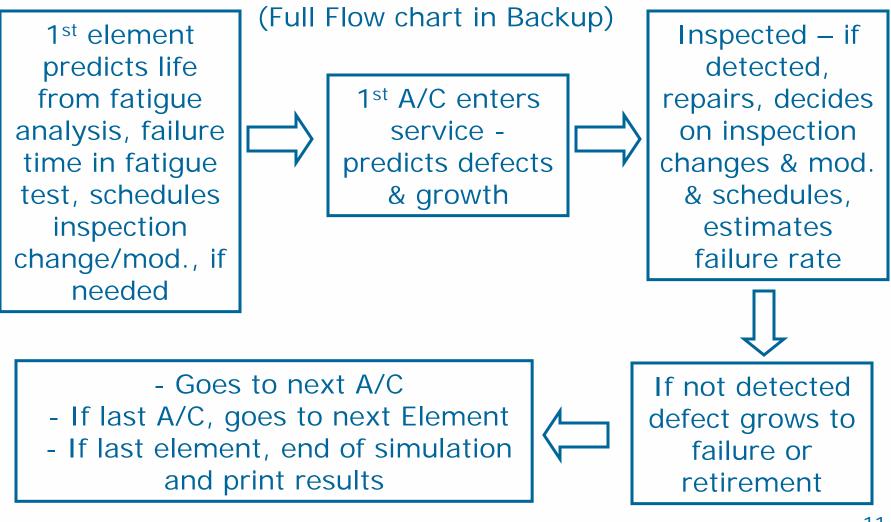
- Simulation input was approximate but was based on a considerable effort to analyze extensive engineering, test and service data
- 10 years of MRR's
- Results compare favorably with service experience



How the Model Works

• Input Definitions of:

- Fleet (Hybrid 747 Wing and DC-10 Fuselage)
- Fatigue substantiation programs
- Loading environment
- Primary structure in terms of elements
- Elements fatigue life, crack growth rate, fail-safe strength, past corrosion and damage rates
- Inspection program
- Corrective action policies

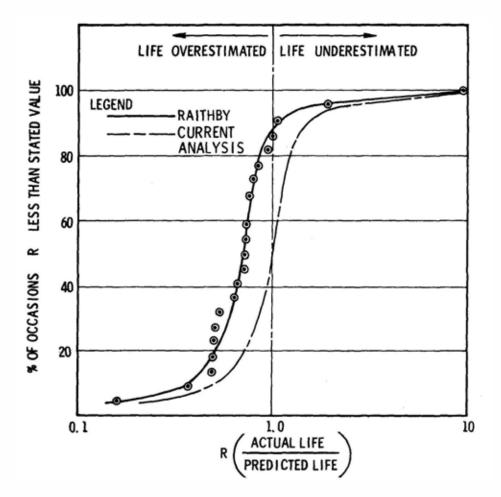

Typical SAIFE Structural Elements

SAIFE will Predict the Following for an Aircraft Fleet

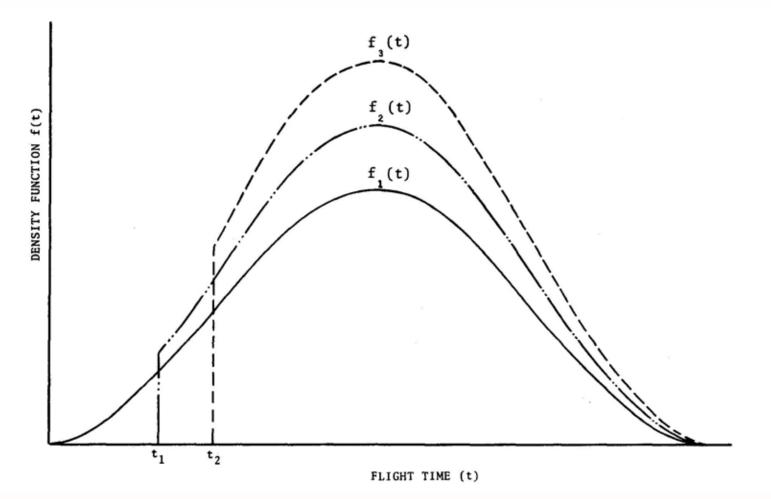
- Number, Type and Size of Defect Crack as well as Occurrences & Detections
- Number of Complete Structural Failures
- Number of Modifications & Special Inspections
- SAIFE will Give History of Major Occurrences
- Repeated Trials will Provide Relative Probabilities of Complete Failure and some Information on Relative Burdens of Various Proposed Actions

Summarized Flow of Simulation

SOFTWARE



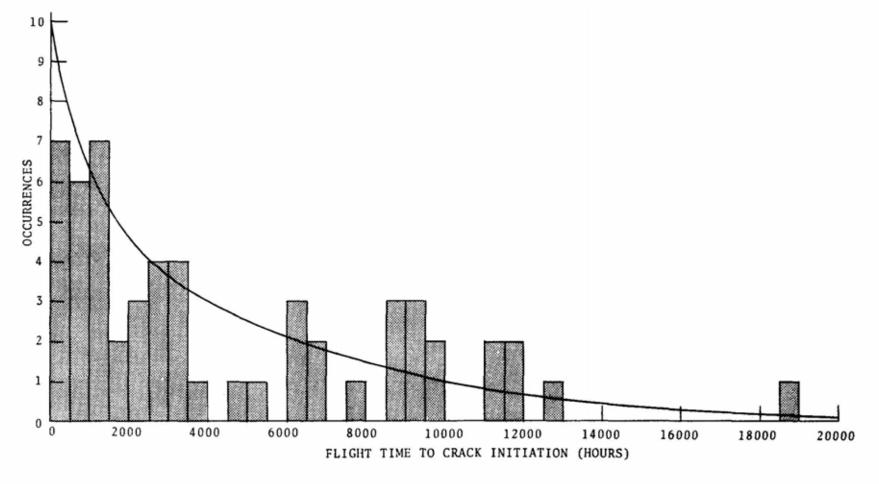
Major Elements of SAIFE Process


ENGINEERING SOFTWARE SOLUTIONS

()

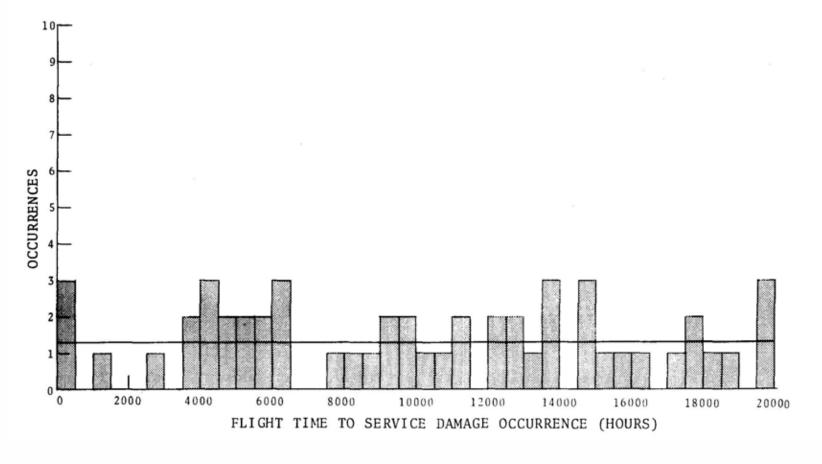
Account for Inaccuracies in Fatigue Analysis

Predict 1st and 2nd Fatigue Cracks in Individual Elements

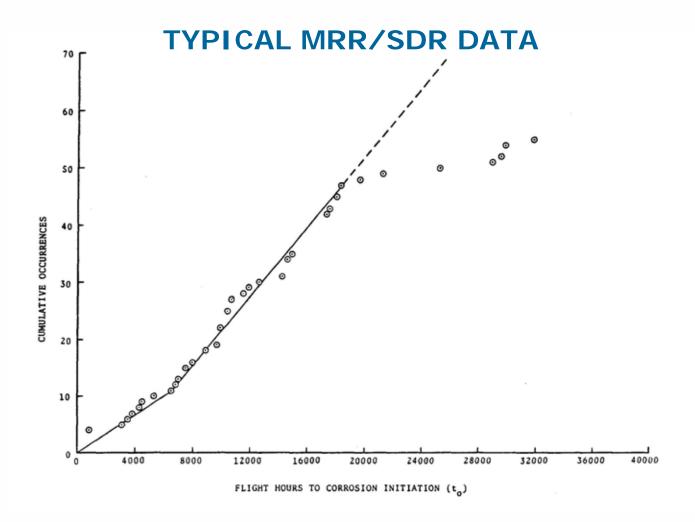


Predict Fatigue Crack Growth

TYPICAL MANUFACTURERS DATA 12 SECOND⁻¹ FAST GROWTH SECOND RATE SLOW GROWTH RATE FAILSAFE 9 PANEL DEVELOPMENT TESTS AND PROJECTED AIRCRAFT UTILIZATION INITIAL DAMAGE CONSISTS OF A SEVERED STRINGER AND A **1 INCH SKIN CRACK** SKIN 6 CRACK. LENGTH FIRST 6 INCHES (INCHES) FAST GROWTH RATE 3 CRITICAL CRACK -+| | -- 1 INCH LENGTH --FIRST 2024 - 7351 SKIN 1 SLOW GROWTH 7075 - T6 STRINGERS RATE Ø 15 26 30 35 $20 \cdot$ 5 10 300.000 HOURS SERVICE LIFE (FLIGHT HOURS) (FATIGUE)

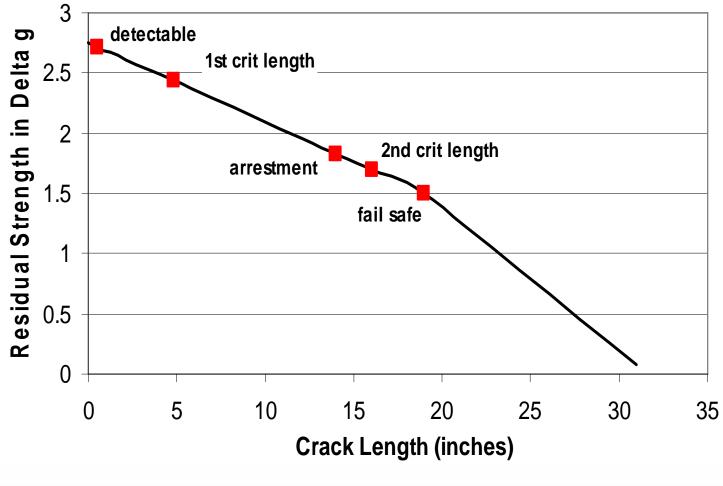


Predict Fatigue Cracks from Production Defects



Predict Service Damage and Coincidental Fatigue Crack Initiation

Predict Corrosion Initiation

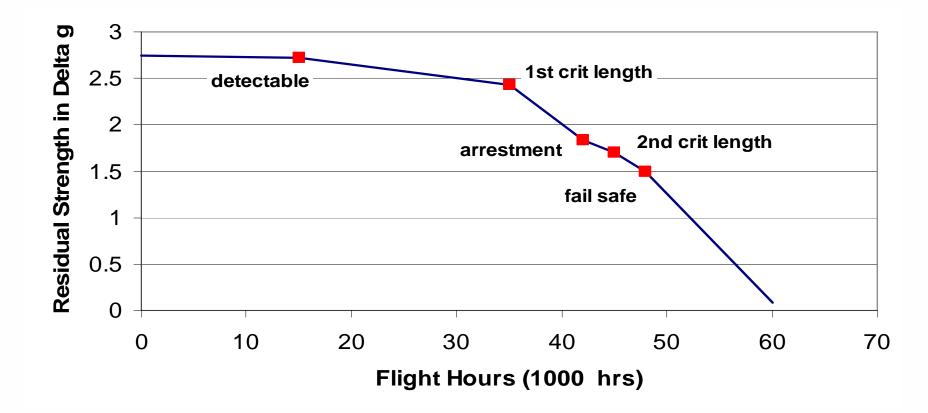


Corrosion Effects

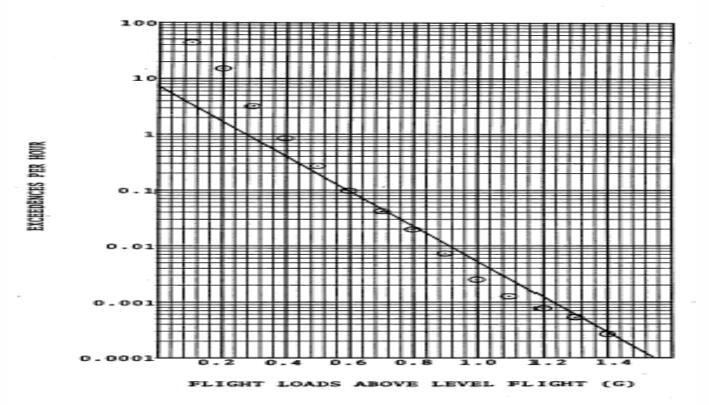
- Decreases time to fatigue crack initiation
- Increases crack growth rates
- Presently does not affect residual static strength but could

Estimate Residual Strength vs. Crack Length

SOFTWARE

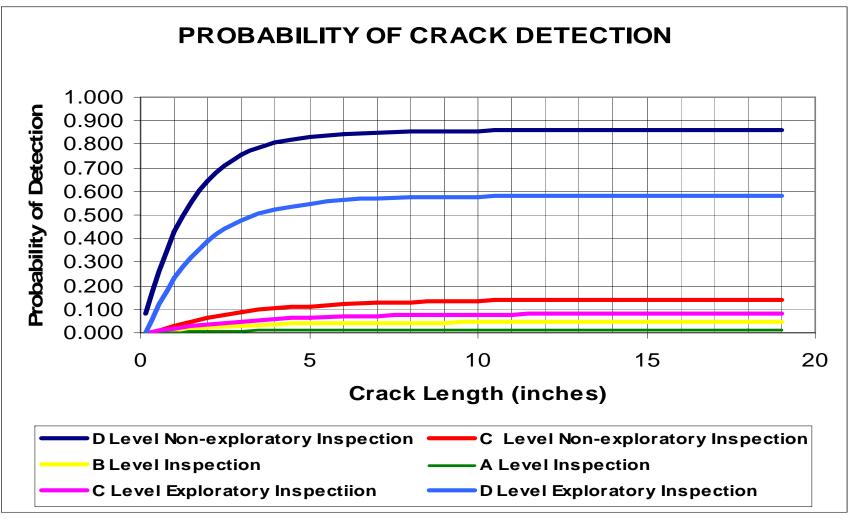

SOLUTIONS

ENGINEERING


20

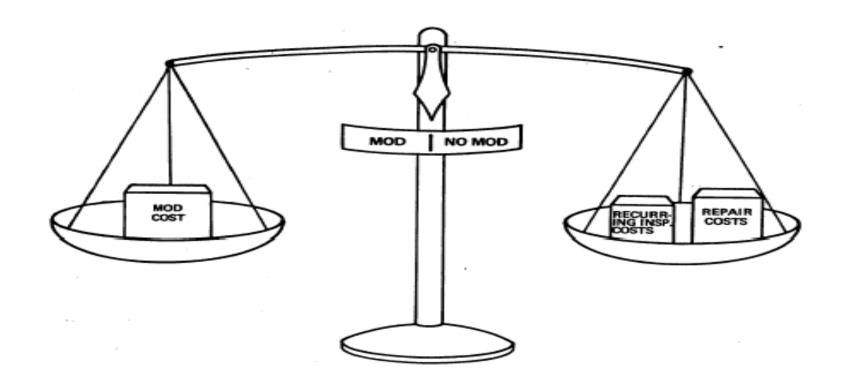
Convert Residual Strength Curve to Flight Hours

Estimate Probability of Crack Failure from Residual Strength & Load Exceedances



Flight Load Exceedances

SOLUTIONS



Predict Whether Cracks Detected

Repair Detected Cracks and Decide if Inspections Increase and/or Modification Needed

Typical Element History Output

ENGINEERING SOFTWARE SOLUTIONS

		STRUCTURAL ELEMENT: F	US-MFR-SID-1740					in a t
		FE: 157620 HOURS	ACTUAL AV	ERAGE FATIGUE	LIFE: 34	3268 HOURS		irst
IGUE TEST LIFE:9999999								
		MBER AND TIME TO INITIAT						rack
	FIRST CRACK	CORROSION	SERVICE DAMA	GE PR	ODUCTION	DEFECTS		
OCCURRENCES	3	0	2		0			
MIN(HRS)	2615	0	2615					
MAX(HRS)	36817	0	30910					/D
AVG(HRS)	23447	0	16762					
		D LENGTH OF CRACKS DETEC			N			evel
	A-LEVEL	B-LEVEL	C-LEVEL	D-LEVEL		SPECIAL		evei
OCCURRENCES	0		2	0		1		
MIN(IN)	0.	0.	3.97	0.		2.49		
MAX(IN)	0.	0.	7.62	0.		2.49		roh of
AVG(IN)	0.	0.	5.80	0.		2.49		rob. of
		A OF CORROSION DEFECTS D			CTION			
	A-LEVEL	B-LEVEL	C-LEVEL	D-LEVEL		SPECIAL		ailure
OCCURRENCES	0	0	0	0		0		
MIN(SQ.IN)	0.	0.	0.	0.		0.		
MAX(SQ.IN)	0.	0.	0.	0.		0.		
AVG(SQ.IN)	0.	0.	0.	0.		0.		
INSPECTION INTERVALS	S(HRS)				MOD NO	SAMPLING	TIME	
INITIAL	25	315	1000	3200	0	15		
2	25	315	1125	4800	0	11	3800	
3	25	315	1266	7200	0	8	8600	
4	25	315	1424	10800	0	6	15800	
5	25	315	1602	16200	0	5	26600	
6	25	315	2002	20250	0	6	42800	
7	25	315	2503	25313	0	7	67150	
8	25	315	2503	8859	0	20	87223	
	CRACK LENG	THS AND CORRESPONDING CU	MULATIVE PROBABL	LITY OF FAILUR	8			
AIRCRAFT NO.		FLT. HOURS	CRK.LGT.		PROB.	OF FAILURE		
194		58262	3.97		+6.	E-013		
489		43273	7.62		+4.	E-012		
474		44773	2.49		+2.	E-013		
NUMBER OF SPECIAL IN	SPECTIONS CON	DUCTED: 1						
NUMBER OF STRUCTURAL	MODIFICATION	S: 0						
FINAL ACTUAL AVERAGE	E MODIFIED FAT	IGUE LIFE: 343268 HOURS						
NUMBER OF AIRCRAFT M	MODIFIED IN SE	RVICE: 0						
ESTIMATED ELEMENT FA	AILURE RATE:+1	.72E-019/HR.						
STRUCTU	JRAL FAILURES		RESIDU	AL STRENGTH EQ	UALS FAIL	-SAFE STRENG	TH	
AIRCRAFT NO.	FLT.	HOURS		AIRCRAFT NO.	FL	T. HOURS		
								26

ENGINEERING

SOFTWARE

SOLUTIONS

SAIFE Demonstration Results

ENGINEERING SOFTWARE SOLUTIONS

Summary of Demonstration Run - Failure Rates

Estimate	ed Failure Rate u	Estimated Fai	stimated Failure Rate		
	<u>Full</u>	<u>Sample</u>	Full	Sample	
Door Frame	2.54E-15	3.58E-15	6.70E-15	2.01E-13	
Window Frame	5.02E-14	1.78E-14	1.16E-11	3.90E-14	
Fuselage					
-Main Frame, Bottom	4.54E-18	6.47E-18	4.54E-18	1.08E-15	
-Main Frame, Side	9.82E-18	9.49E-14	1.18E-16	1.84E-14	
-Main Frame, Top	6.70E-18	2.17E-17	8.70E-18	2.85E-16	
-Stringer, Bottom					
-Stringer, Side	1.61E-11	2.55E-13	3.63E-10	2.43E-10	
-Stringer, Top	2.45E-16	1.61E-17	2.45E-16	8.60E-17	
Wing					
-Access Frame	3.98E-12	2.90E-12	4.34E-12	3.82E-12	
-Spar, Aft	8.55E-13	1.30E-12	1.09E-12	1.44E-12	
-Spar, Center	4.64E-12	1.22E-11	1.11E-10	1.64E-11	
-Spar, Forward	1.95E-14	0.00E-00	1.61E-14	0.00E-00	
-Stringer, Aft	3.14E-12	2.80E-12	8.35E-12	3.99E-12	
-Stringer, Center	4.64E-12	1.22E-11	1.11E-10	1.64E-11	
-Stringer, Forward	4.63E-13	3.08E-12	2.04E-12	3.44E-12	
Wing Center Section					
-Stringer, Aft	7.81E-13	3.08E-14	7.57E-13	0.00E-00	
-Stringer, Center	2.90E-14	1.49E-15	1.11E-10	0.00E-00	
-Stringer, Forward	5.07E-15	0.00E-00	2.04E-12	0.00E-00	
-Spanwise Beam, Aft	1.18E-12	3.49E-14	5.86E-12	9.88E-13	
-Spanwise Beam, Cente	r 1.54E-13	1.94E-13	1.38E-13	0.00E-00	
-Spanwise Beam, Forwa	rd 7.39e-14	4.69e-15	5.83E-14	0.00E-00	
Pressure Loaded Total	4.80F-14	1.03E14	6.26E-13	4.23E-14	
Flight Loaded Total	6.71E-11	3.02E-11	7.51E-10	2.84E-10	
Total	5.00E-11	3.02E-11	5.83E-10	2.84E-10	

Note: No actual failures occurred in demonstration run of 3.0E07 hrs.

Comparison of Cracks Detected at Each Inspection Level per Million Flight Hours

	<u>FULL</u>		SAM	PLE	MRR-SDR	
	Cracks	% of	Cracks	% of	Cracks	% of
	Detected	Total	Detected	Total	Detected	Total
Preflight	24.87	9.56	25.34	7.82	2.87	4.3
Service	20.89	8.03	20.18	6.42	7.93	11.8
Phase	28.49	10.95	29.86	9.22	10.94	16.3
Overhaul	147.24	56.59	200.45	61.87	24.21	36.1
Special	<u>38.69</u>	<u>14.87</u>	<u>47.51</u>	<u>14.66</u>	<u>21.14</u>	<u>31.5</u>
Total	260.18	100.00	323.98	100.00	67.09	100.0

SOFTWARE

Comparison of Size of Cracks Detected

	<u>FULL</u>	SAMPLE	Average Length
	Average Length	Average Length	Where Reported
	(inches)	(inches)	(inches)
Preflight	1.573	1.943	
Service	1.719	1.812	
Phase	1.688	2.505	
Overhaul	1.375	1.467	
Special	1.771	2.014	
Fuselage Total	1.741	1.815	1.99
Wing Total	1.118	1.470	2.16
Total	1.515	1.718	2.089

* All reports, assuming 5/8" length when not reported

ENGINEERING

SOFTWARE

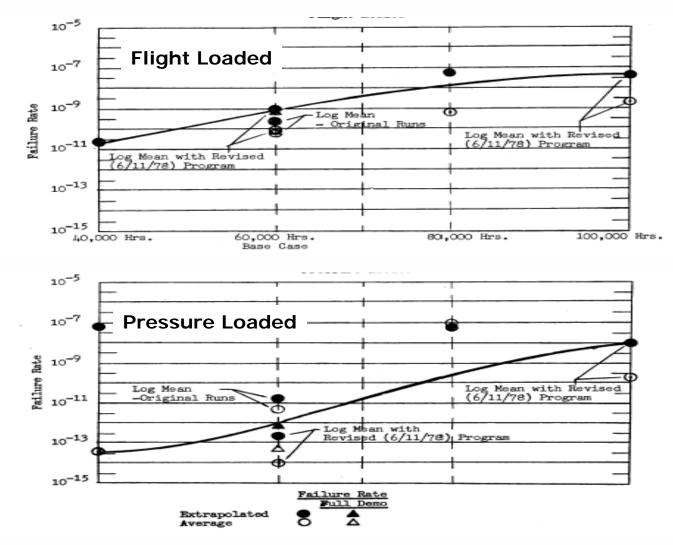
MMR/SDR

(1.567)*

Examples of SAIFE Parametric Study

ENGINEERING SOFTWARE SOLUTIONS

Fleet Usage Life

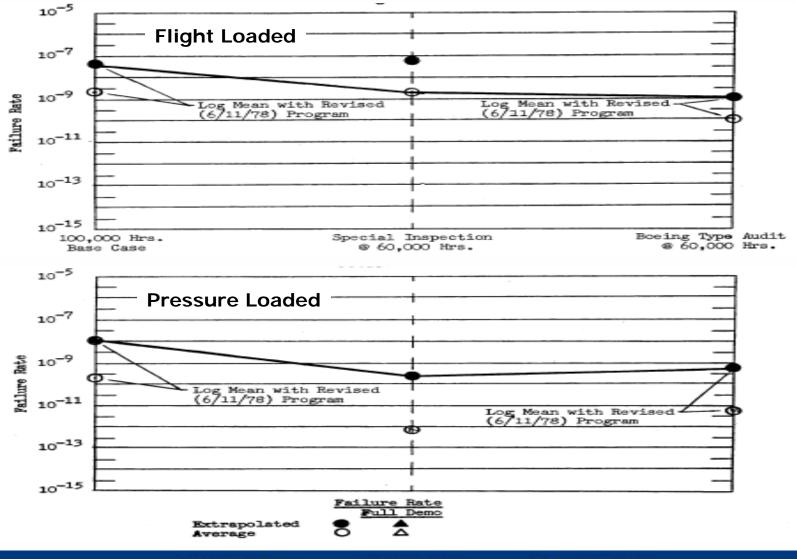

- Usage life varied from planned life (60,000 hrs)
- Distribution of sample results log normal, mean plotted
- Base case log mean of 3 runs
- Failure rate tends to lower asymptote F (overload rate).
- Review of detailed results indicates time available for crack growth is a major factor

IMPLICATIONS:

- Wide-body safety level satisfactory for planned life (60,000 hrs)
- Safety level with normal practices inadequate for extended usage beyond planned life

Fleet Usage Life (cont.)

ENGINEERING


Action on Old Age Aircraft

- Usage life extended to 100,000 hours on all runs
- Special complete internal and external inspections at 60,000 flight hours (1 run)
- Audit at 60,000 flight hours Limit D check to 15,000 hours in all areas and use internal NDT in areas of low fatigue life with poor detectability (3 runs)
- Base case normal inspections (3 runs)
- Review of results indicates that runs with corrective action
 underestimates their effectiveness

IMPLICATIONS:

- Safety level with normal program is inadequate for 100,000 hours
- Corrective action evaluated provides a safety improvement that is adequate with audit approach being more effective
- More runs could be useful

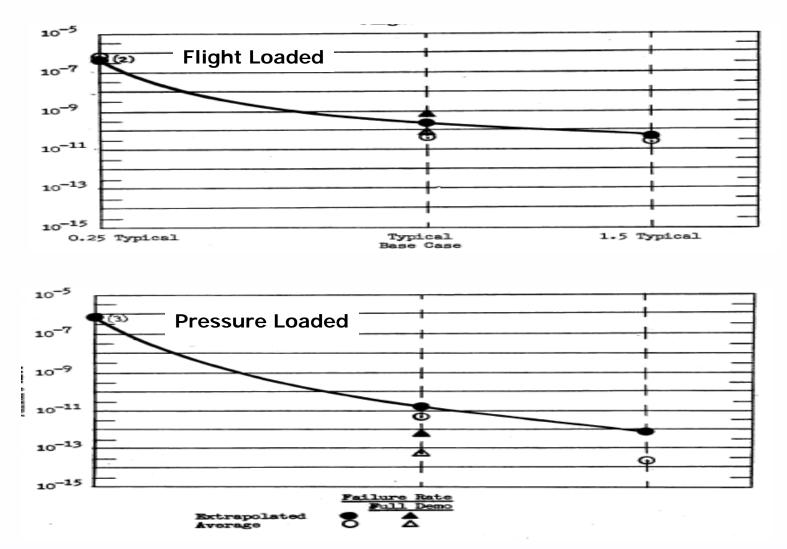
Action on Old Age Aircraft (cont.)

ENGINEERING

SOLUTIONS

35

Critical Crack Length


- Critical crack length defined as first length at which crack propagation rate sharply increases
- Typical wide-body critical crack length (5 to 14 inches) varied as a F (material and stress level)
- Crack with shorter critical crack length reduces strength faster
- Detail review indicates runs typical

IMPLICATIONS:

- Reduction in typical critical crack length would drastically reduce safety level
- Increase in typical critical crack length would result in only small increase in safety level

Critical Crack Length (cont.)

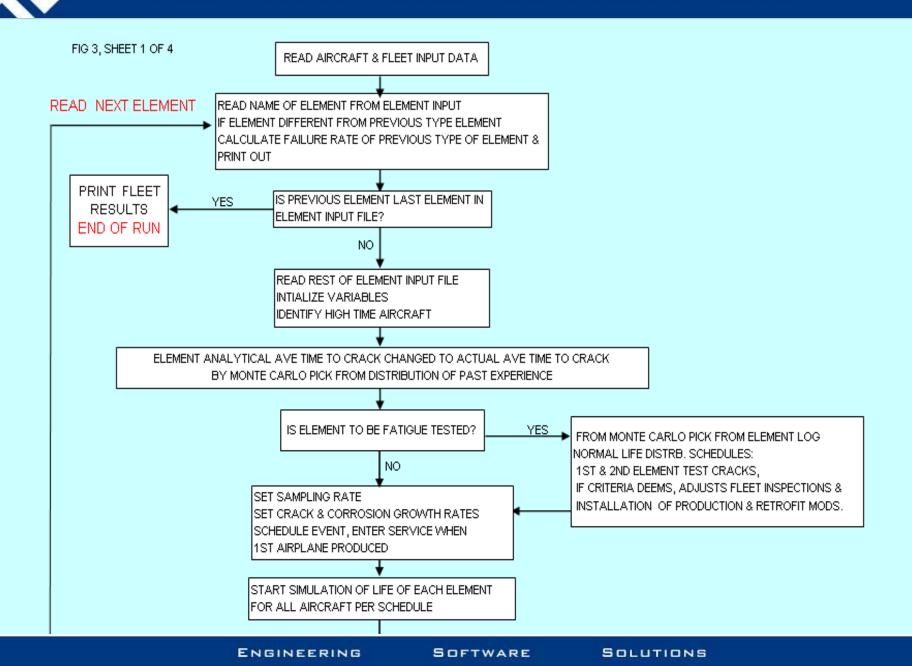
ENGINEERING

Conclusions of Original SAIFE Parametric Study

- Present Designs, Inspection Programs and Practices Provide Adequate Safety for Original Planned Life and Usage
- Effective Special Action (i.e., More Stringent Inspection and/or Modification) Needed if Life or Usage Well Beyond that Originally Planned

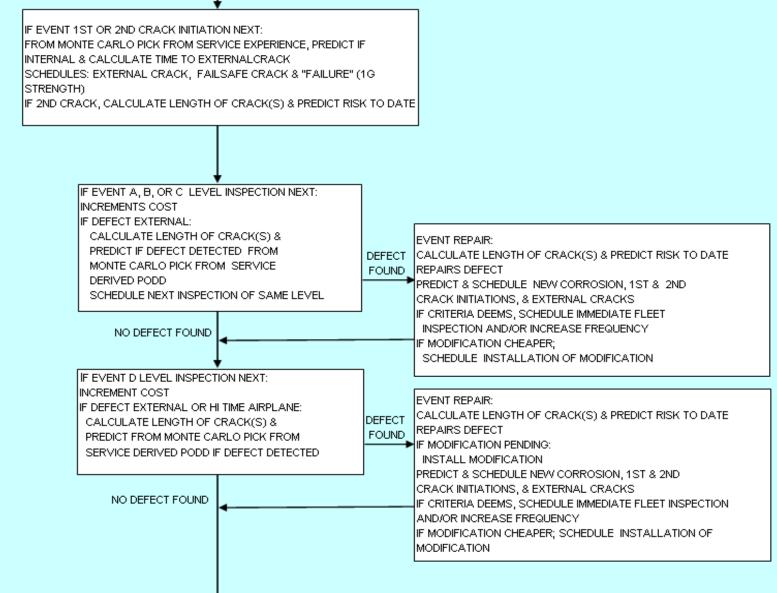
Recommendations of Original SAIFE Parametric Study

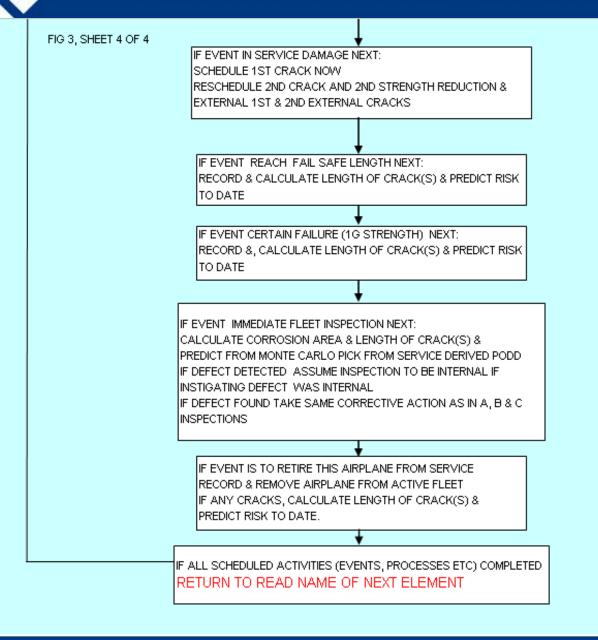
- Strengthen Existing Continued Structural Monitoring by issuing Guidance Material on Assessment and Results in Supplemental Inspection Document (SID)
- Reassess and Issue or Revise SID whenever:
 - Aircraft will be used well beyond the original planned life
 - New operators experience or capability is marginal
 - Aircraft used in mission more severe than originally planned
 - Service experience indicates that large portions of structure is marginal


Current Conclusions

- SAIFE can be used for individual elements, types of elements or a complete airplane
- SAIFE can supplement current typical Risk Analyses (which cover only one local critical area and account for only a limited number of variables) by providing valuable insights and overall global view
- SAIFE should be improved and further use explored

Backup Slides


ENGINEERING SOFTWARE SOLUTIONS



ENGINEERING

SOFTWARE

SOLUTIONS

ENGINEERING S

SOFTWARE

SOLUTIONS