ASIP on the U-2

560th Aircraft Sustainment Group (C2ISR)

Tailoring of an Aircraft Structural Integrity Program for High Demand, Low Density Pre-ASIP Aircraft

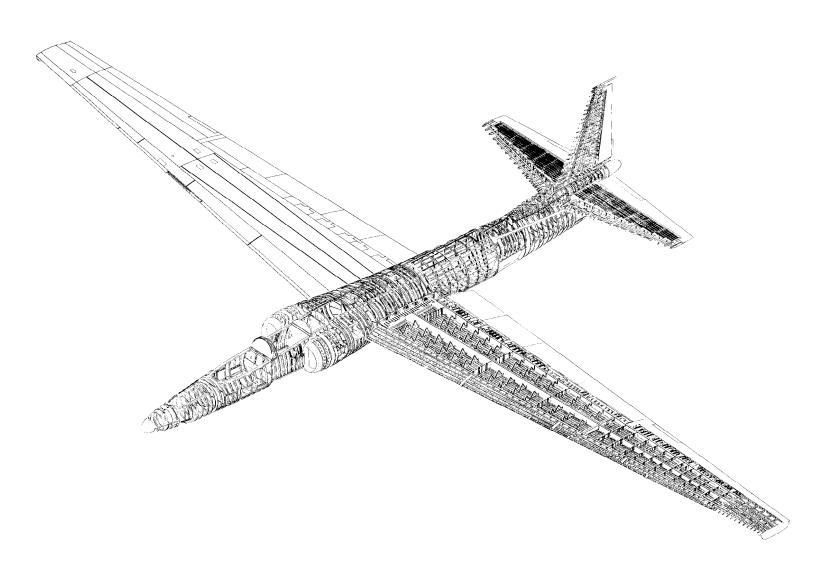
Briefers:

Mr Scott Mangrum 560 ACSG, Robins AFB

Mr Greg Birdsall LM Aero-Palmdale

December 4, 2007

U-2S Mission Configurations

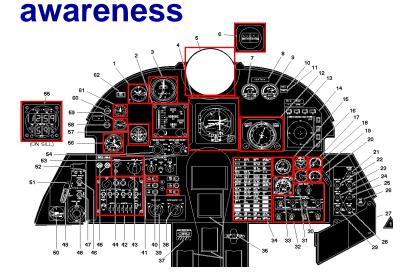


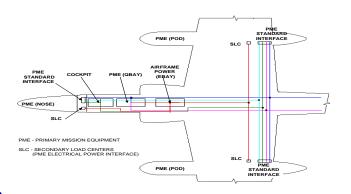
U-2S Construction

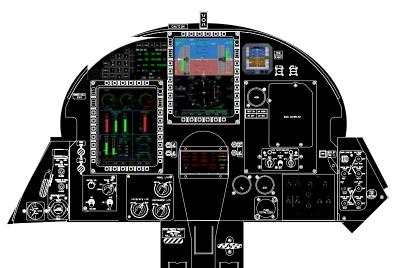
U-2 History and Development

- U-2R First Flight August, 1967
- USAF procured from another agency, with no requirement or provision for ASIP
- Service Life was not initially an issue
 - No fatigue test or analysis
 - Rigorous IRAN program
- Initial build was 12 airframes plus static test
 - 6 USAF
 - 6 Agency
- Lessons learned from U-2C experience incorporated into R-Model design

U-2 History and Development


- Initial fatigue analysis accomplished 1976
- Restart TR-1A/U-2R production in 1979
 - 36 airframes, same configuration as existing U-2R
 - 3 TR-1B/U-2RT trainer aircraft
 - Airframe life analysis accomplished as part of restart effort
 - Greater than 20,000 hours (with 2 exceptions)
 - 7 areas of concern identified for PDM inspection on airframes older than 20,000 hours
- Re-engined and converted to U-2S beginning 1993
 - F118-GE-101 replaced J75P13B
 - New engine mount structure
 - Added AMAD and Secondary Power Equipment




U-2 History and Development

- Block 10 Upgrade beginning in 1997
 - Rewire to reduce EMI
 - New power distribution system
 - "Group B" provisions
 - Life re-addressed
- Block 20 Upgrade beginning in 2000
 - Reduce pilot workload and increase situational

U-2 Meets ASIP

- Re-engine, planned Block 10 and Block 20 Mods significant investment in the U-2 Airframe
- U-2 Specific sensors upgrades planned
- 1968 build airframes approaching 20,000Flight Hours
- Need to insure return on investment
- ASC/EN Report on concerns for aging aircraft
- WR-ALC/LX directs a tailored ASIP for the U-2

U-2 ASIP Plan Development

- Challenges in Developing U-2 ASIP
 - No Loads Survey
 - No initial fatigue test
 - No instrumented aircraft
 - No plans or provisions for ASIP in design or documentation
 - Service history incomplete prior to late 1980s
 - Significant events not always documented
 - Paper only, not easily searchable
 - Payload, mission type, etc not always noted
 - Widely varying payload configurations, fuel loads, mission profiles and mission mixes

U-2 ASIP Plan Development

- ASIP Master Plan developed jointly
 - WR-ALC/LX Mr. Mangrum
 - ASC/EN Dr Jack Lincoln, Dr Hsing Yeh, and others
 - LM Aero (OEM) Mr. Priestley, Mr. Lenvik and others
- Based on review of available information
 - Current activities (1998 Service Life Study)
 - ASIP requirements
 - Previous History (Four 20,000 flight hour aircraft as "Lead the Fleet" aircraft)
 - Projected program life and ops tempo

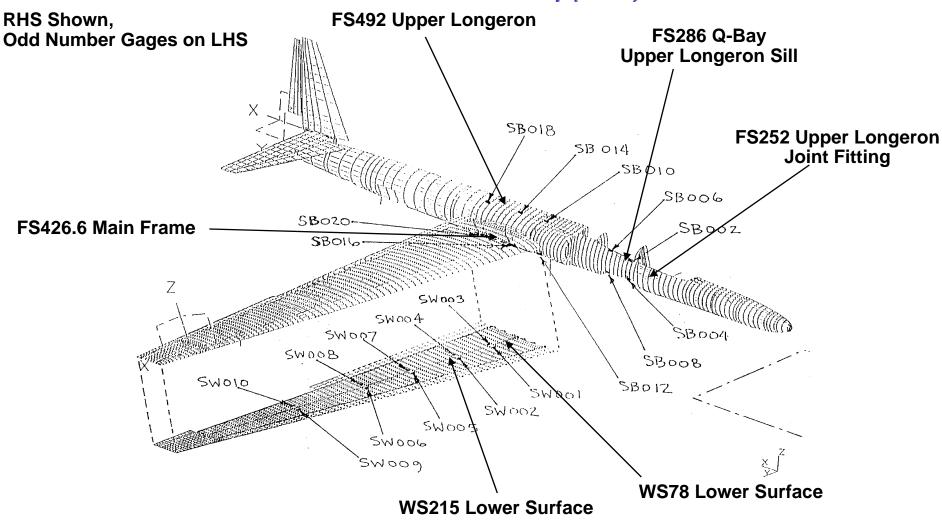
U-2 ASIP Plan Development

- Three phased approach
 - Complete 1998 Service Life Study with enhancements
 - Include empennage
 - Include limited fracture analysis
 - Accomplish NDI of "Hot Spots" on two 20,000 flight hour aircraft at PDM
 - Monitor aircraft performance
 - In service failures
 - Mission profiles and mixes
 - Compare to ASIP baseline and address differences
 - Publish in an annual update to the ASIP Master Plan

U-2 Structural Evaluation Plan

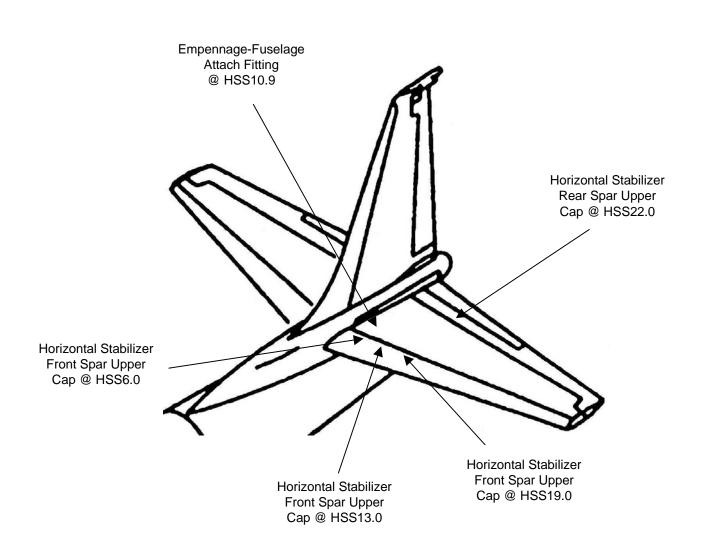
560th Aircraft Sustainment Group (C2ISR)

1998 Service Life Evaluation


- Reassess life of the airframe
- Addressed Wing and Fuselage only
- Used measured stresses and correlated loads
 - Strain Gages located at previously identified (1979 Life Update) "critical areas"
 - Both ground and flight data
- Additional Tasks for ASIP
 - Empennage Fatigue Analysis
 - Wing and Empennage Fracture Analysis

1998 Service Life Study Instrumentation

560th Aircraft Sustainment Group (C2ISR)


Strain gages to determine stresses at critical locations from 1979 fatigue Analysis

1998 Empennage Critical Areas of

Concern

1998 Service Life Study Results

		SP4445 Fatigue Analysis Feb. 1976	SP5165 Fatigue Analysis 1979 Update	SP7952/SP8206 1998 Airframe Service Life Pgm.
•	FS 252 Upper Long. Ftg.	78,750	>20,000	>100,000
•	FS 286 Upper Long. Skin	10,138	10,564	>100,000
•	FS 492 Upper Long. Skin	22,156	18,618	>100,000
•	FS 426.6 Main Frame	27,988	20,839	>100,000
•	WS 78 Wing Lower Skin	31,500	20,250	75,000
•	HS 18.5 Upper Skin	91,928	>20,000	>100,000
•	Empennage Ftg.	10,450	>20,000 (Ftg. beefed up)	>100,000

U-2 Service Life Study Conclusions

560th Aircraft Sustainment Group (C2ISR)

Service Life Study showed

- Initial fatigue analysis (1976 and 1979) were very conservative
- Fatigue Life
 - Lower wing skin @ WS 78, has life of 75,000 flight hours using current mission mixes and payloads
 - All other critical areas >100,000 flight hours
- Crack Growth
 - Lower wing surface @ WS40 & 59 critical crack length reached at 12,000 flight hours (.050" initial flaw size)
 - All other critical areas >16,000 flight hours

U-2 ASIP Implementation

560th Aircraft Sustainment Group (C2ISR)

Completed ASIP Tasks

- Service Life Study
- Detailed inspections of fatigue critical areas on two 20,000 hr+ PDM aircraft

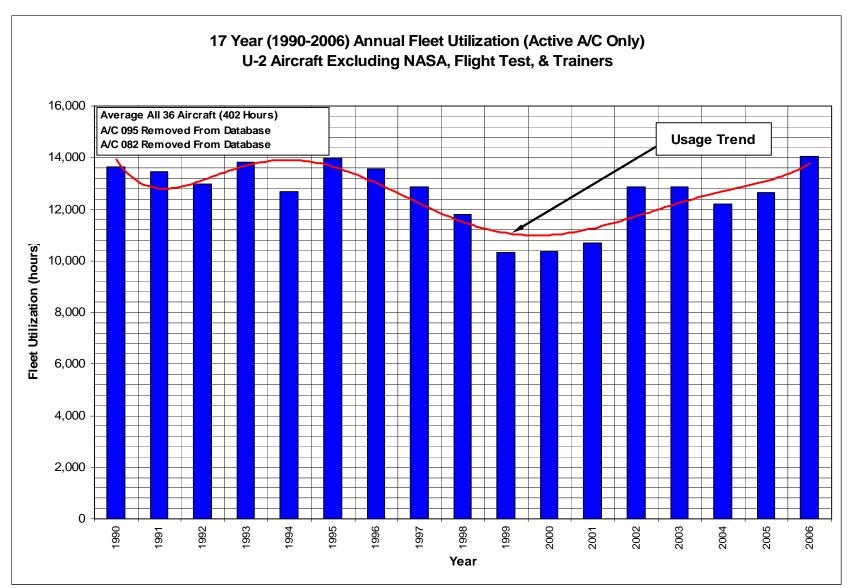
Ongoing ASIP Tasks

- Review of structural failure and corrosion data from
 - Form 107 requests for repair
 - Periodic Inspection Form 131 reviews
 - PDM Squawks
- Review and comparison of aircraft usage to ASIP Mission Mixes
- Annual update of ASIP Master Plan

U-2 ASIP Implementation

TASKI	TASK II	TASK III	TASK IV	TASK V
DESIGN INFORMATION	DESIGN AND DEVELOPMENT TESTS	FULL SCALE TESTING	FORCE MANAGEMENT DATA	FORCE MANAGEMENT
ASIP Master Plan	Materials and Joint Allowables	Static Tests	Final Analyses	Loads Environment
Structural Design Criteria	Loads Analysis	Durability Tests	Strength Summary	Spectra Survey
Damage Tolerance and Durability Control	Design Service Loads Spectra	Damage Tolerance Tests	Force Structural Maintenance Plan	Individual Aircraft Tracking Data
Selection of Materials, Processed, and Joining Methods	Design Chemical and Thermal Environment Spectra	Flight and Ground Operations Tests	Loads Environment Spectra Survey	Individual Airplane Maintenance Times
Design Service Goal and Design Usage	Stress Analysis	Aeroacoustic Tests	Individual Aircraft Tracking Program	Structural Maintenance Records
Mass Properties	Damage Tolerance Anal.	Flight Vibration Tests		Weight and Balance Records
	Durability Analysis	Flutter Tests		
	Aeroacoustics Analysis	Interpretation and Evaluation of Test Results		
	Vibration Analysis	Weight and Balance Testing		
	Flutter Analysis		U-2 Compliant	
	Effects Analysis Nuclear & Non-Nuclear Weapons		U-2 Partially Compliar	nt
	Design Development Tests		U-2 Non-Compliant	
	Mass Properties Analysis		Not Applicable	

U-2 ASIP Lessons Learned



- Tailoring of ASIP requirements leads to a cost effective, non-intrusive program
- Current program status, performance history, and available information establish tailoring requirements and program goals
- Annual updates of ASIP documentation provide valuable reference information and perspective
- Lead the Fleet experience is invaluable

U-2S Aircraft Usage Trend

U-2 Current Status

- OEF/OIF have significantly altered aircraft usage
 - Longer sorties/heavier take off weights, more operational sorties
 - ASIP plan updated to reflect new mission mixes
- Small fleet, "Grey Beard" Engineering staff compensate for limited automated data collection and reduction
- Reliability Centered Maintenance Analysis (RCMA)
 - ASIP analysis is starting point for Structurally Significant Items analysis
 - 45 single load path elements will be analyzed

U-2 Current Status

- No failures of primary structure
- Few cracks in primary structure
 - Most result of poor fit up/preload at initial build
 - Few result of mis-manufactured parts
- Few corrosion issues
- Nuisance cracks
 - Typically in .032/.040 skins at knife edge fasteners
 - Standard "-3" repairs in place and effective
- Fleet-wide, airframes have >60,000 flight hours remaining

QUESTIONS?