

Integration of Ground and Flight Testing on F-35 Lightning II Program

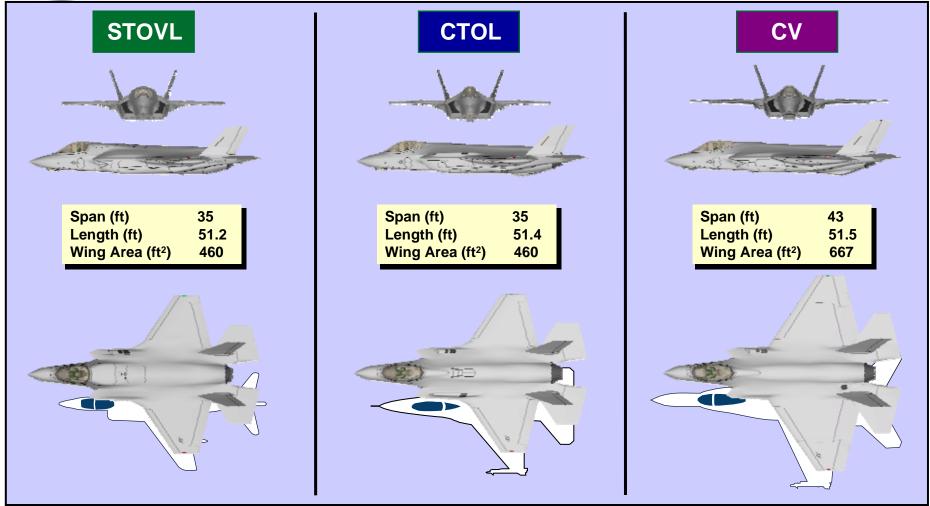
04 December 2007

J. B. Yates
Lockheed Martin Aeronautics

Acknowledgements

- Robert J. Burt, F-35 Chief Structures Engineer
- Phil Gross, F-35 Deputy Chief Structures Engineer
- Pablo Guerrero, F-35 Structural Test Planning
- Marguerite Christian, F-35 Static Test Technical Lead
 - John Bradley, CTOL
 - Todd Bevan, CV
 - Jim Doyle, STOVL
 - Don Whiteley, STOVL
- Steve Owens, F-35 Structural Certification

F-35 Program Overview

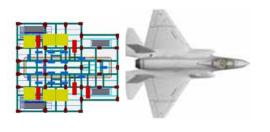


- Family of Three Air Vehicle Variants, with Similar Structural Arrangements
 - Each Variant is Designed To Satisfy the Requirements of a Separate Military Branch
 - F-35A = Conventional Take-Off and Landing (CTOL) Variant
 - F-35B = Short Take-off and Vertical Landing (STOVL) Variant
 - F-35C = Carrier Variant (CV)
- Simultaneous Development and Testing the Three F-35
 Variants Provides Both Opportunities and Challenges
 - Opportunities Commonality & Efficiencies
 - Challenges Resource & Schedule Concurrency

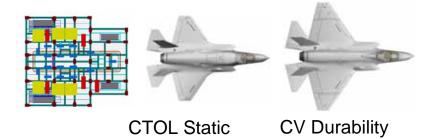
F-35 Variant Planform Comparison

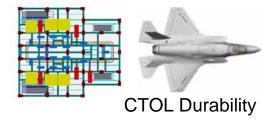
F-35 Structural Ground Test Program

- Full Scale Static & Durability Test of Each Variant
 - Six Full Scale Test Airframes
 - Four Commonly Designed Test Fixtures
 - CV Static Test Airframe Also Used as Drop Test/ Barricade/Live Fire Article
- Proof Tests Conducted on Each Variant's Loads Instrumented Flight Test Aircraft
 - Provides Larger Initial Flight Envelope
 - Reduces Early Flight Test Dependency on Static Test



F-35 Full Scale Tests Locations & Fixture Sharing

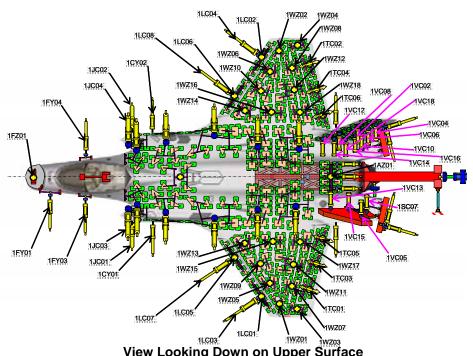

LM Fort Worth, US



CV Static

BAES Brough, UK

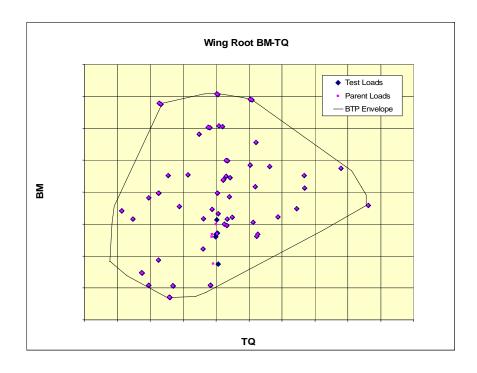
Vought, Grand Prairie TX, US

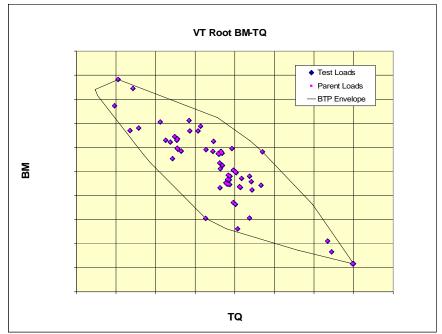

CV Drop

Test Fixture Design Commonality **Enabled by Structural Similarity**

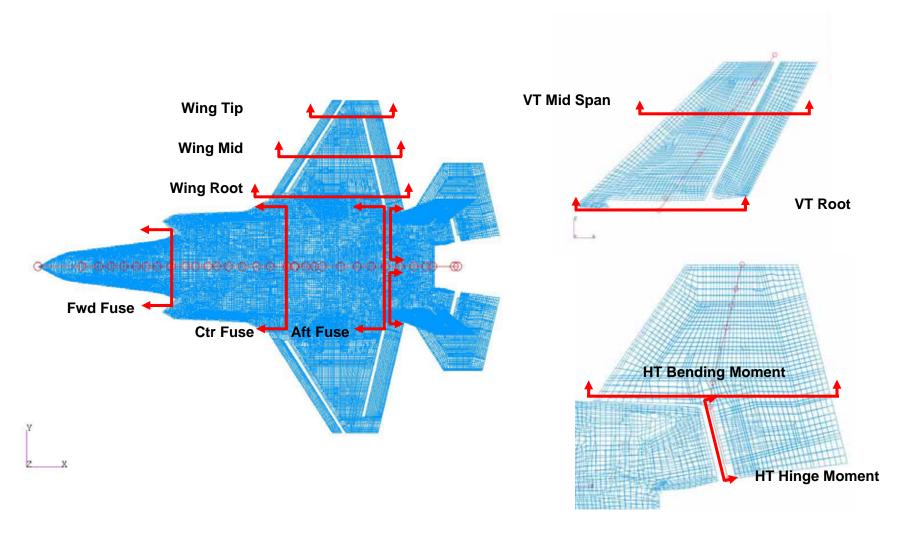
- Similarity of Airframe allows efficiencies in load arrangement design as well as load condition development
 - Common Fuselage Bulkhead Stations
 - Similar Wing & Tail Box Planforms (STOVL & CTOL)

F-35 Load Case Selection Process

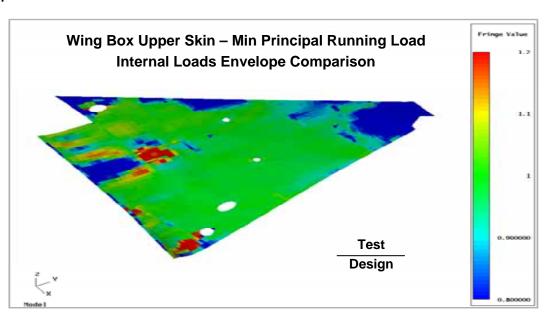

- Comprehensive Set of Load Conditions Selected For Strength Certification of Each Variant
 - Selected to Exercise All Major Components, Control Surfaces,
 Weapons Hardpoints and Flight Opening Doors
- Two Independent Processes Used To Determine Candidate Load Cases For Static Testing
 - External Loads Process
 - External Load Envelopes At Specified Section Cuts Used To Identify Critical Loading Conditions
 - Provided Earlier Support for Test Fixture Design
 - Strength & Stability Margin Process
 - Critical Margins And Failure Modes Reviewed to:
 - Confirm Selections from External Loads Process
 - Referee Between Similar Conditions
- Candidate Load Conditions from the Two Processes Consolidated To Define Final Load Cases Considering:
 - Structural Symmetry & Similarity
 - Load Case Similarity
 - Discrete Load Sources



External Load Case Selection Process


- 15 Integrated Load Envelopes Used in Selection Process
- Perimeter of the Load Envelopes Initially Selected to Provide Early Guidance For Test Fixture and Load Actuator Design (Over 100 Cases)
- Candidate List Selection Based on Knowledge of Primary Structural Drivers and Symmetry
 - Reduced to 30 45 Conditions Depending on Variant
 - Load Arrangement Refined to Improve Match of Selected Conditions

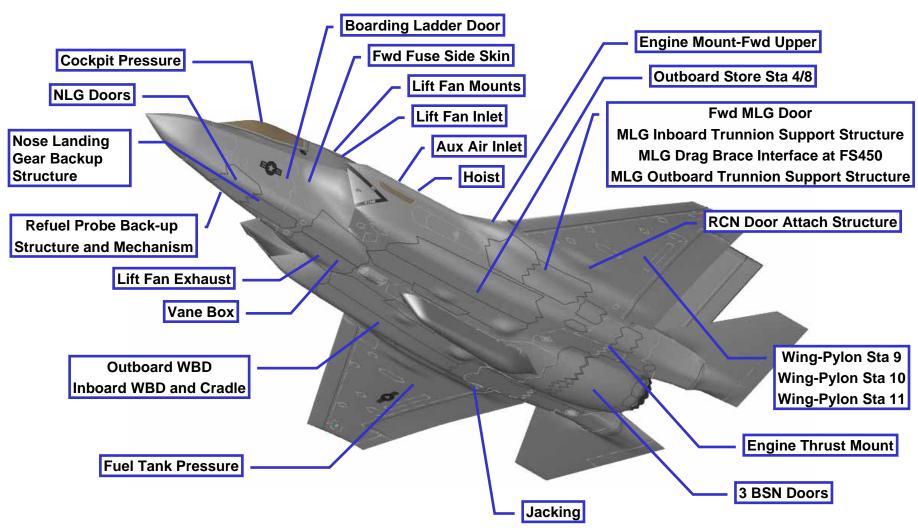
External Load Section Cut Locations



Strength & Stability Margin Based Selection

- Each Structural Analysis Team Reviewed Their Stress Analysis for Critical Loadings
 - Emphasis on Stability Related Margins
 - Preference to Conditions Which Drive Large Areas of Structure
 - Considered Only Loads Which Can Be Represented on Full Scale Static Test
- Review of Critical Margins Confirms Adequacy of Envelopes Chosen for External Loads Review
 - Used to Referee Between Similar Cases Near Envelope Perimeter
 - Ensures All Critical External Load Drivers Have Been Addressed
 - Prompted the Evaluation of LHS and RHS Boom External Load Envelopes

CTOL Global Test Load Conditions



					Wing Fuselage					Tail									
	Mach	Alt	Nz	Maneuver & Description	Wing Root	Wing Midspan	LEF	TEF	FF	CF	AF VBM/LBM	AF VBM/T	Booms	LH Boom	RH Boom	HT	VT Root	VT Midspan	Rudder
1	Med	SL		RT - R Symmetric Pull-Up/Push-Over	X		X												
2	Med	SL		RT - R Symmetric Pull-Up/Push-Over	X	X		X				X	X	X	X	X			
3	Med	SL		RT - R Symmetric Pull-Up/Push-Over						X									
4	Med	SL		RT - R Symmetric Pull-Up/Push-Over								X		X	X				
5	Med	SL		RR - R 360 deg Roll, Full Rate	X								X				X		
6	Med	SL	Man	PL - L Roll Pull-Out, Full Rate			X										X		X
7	Low	SL	Max	A3 - Abrupt Pull-Up/Push-Over Type 3								X		X	X	X			
8	Med	SL	Max	RW - R Trim Open-Close Weapon Bay Doors					X										
9	Med	SL	Man	0L - L Yaw Gust									X		X		X	X	
10	High	Alt	Man	RR - R 360 deg Roll, Full Rate							X								
11	Med	SL	Man	RL - L 360 deg Roll, Full Rate	X	X													
12	Low	Alt	Man	RR - R 360 deg Roll, Full Rate							X	X	X		X				X
13	Med	SL	Max	RT - R Symmetric Pull-Up/Push-Over	X	X													
14	High	Alt	Man	RT - R Symmetric Pull-Up/Push-Over										X	X	X			
15	Med	SL	Min	RW - R Trim Open-Close Weapon Bay Doors	X	X	X												
16	High	Alt	Man	QL - L 180 deg Roll, Full Rate													X		X
17	Low	SL		RT - R Symmetric Pull-Up/Push-Over			X						X	X	X		X	X	
18	Med	SL	Max	A1 - Abrupt Pull-Up/Push-Over Type 1	X	X				X									
19	Med	SL	Max	HS - Hammer Shock						X									
20	Med	SL	Man	PR - R Roll Pull-Out, Full Rate	X	X													
21	Med	SL	Man	QR - R 180 deg Roll, Full Rate				X											
22	Med	Alt		RL - L 360 deg Roll, Full Rate							X	X	X	X					
23	Med	Alt		RR - R 360 deg Roll, Full Rate							Χ	X	X		X				
24	Med	SL	Man	RR - R 360 deg Roll, Full Rate			X												
25	Med	SL	Man	QL - L 180 deg Roll, Full Rate								X							
26	Med	Alt		RL - L 360 deg Roll, Full Rate					X	X							Χ		
27	High	Alt		QL - L 180 deg Roll, Full Rate								X	X		X	X			
28	Med	SL		SR-R Sideslip													X	X	

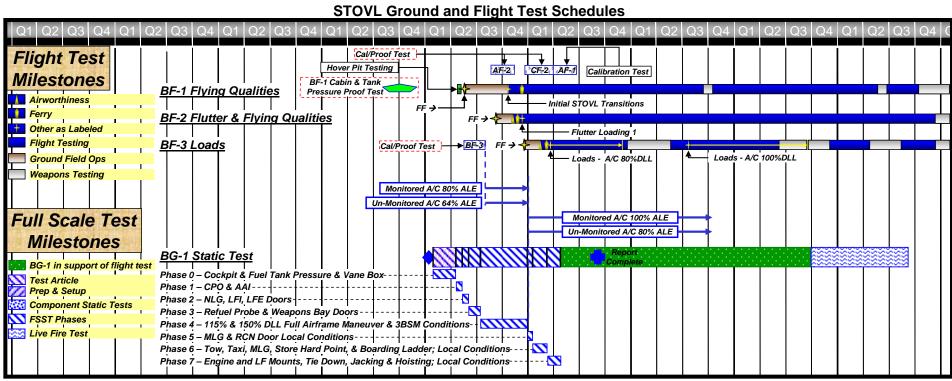
STOVL Local Static Tests

Structural Similarity Enables Cross-Variant Verification Testing

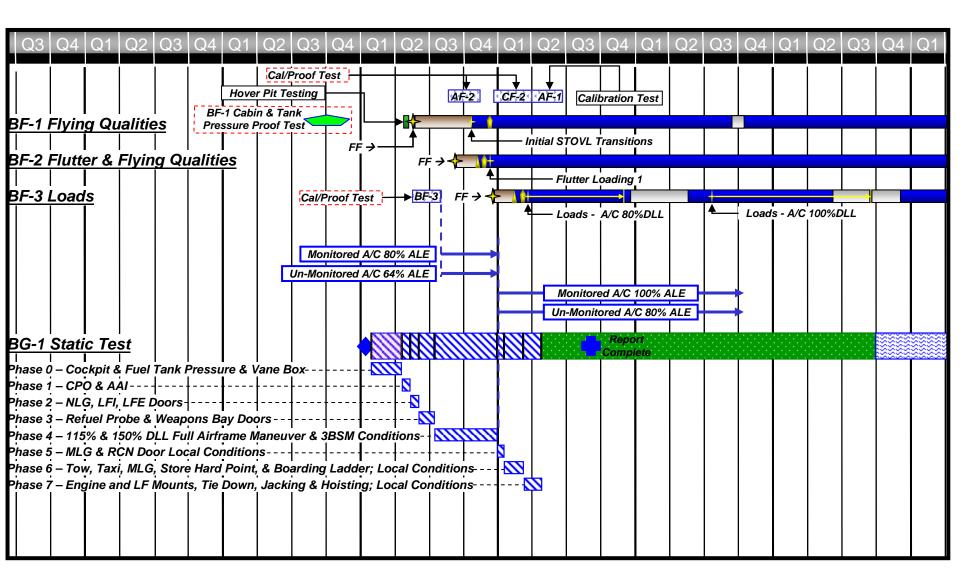
- CV & CTOL
 - Weapons Bay Doors, RGA, & Backup Structure
 - Canopy
- STOVL & CTOL
 - Main & Nose Landing Gear Doors
 - Gear Door Uplocks
- STOVL & CV
 - Air Refuel Probe
- Tri-Variant
 - Engine Mounts
 - Wing Pylons & Hardpoints

Results of Load Case Selection

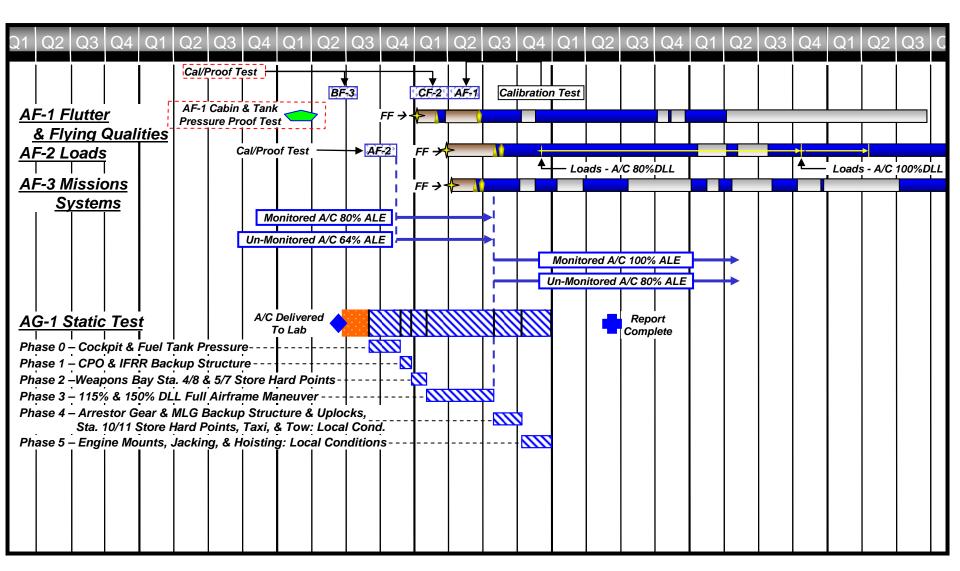
	CTOL	STOVL	CV*
Fuselage Group	13	14	24
Wing Group	9	10	15
Tail Group	6	10	8
Total Full Airframe Cases	28	34	47
Local Tests	34	51	25


* CV Load Case Selections are Still Preliminary

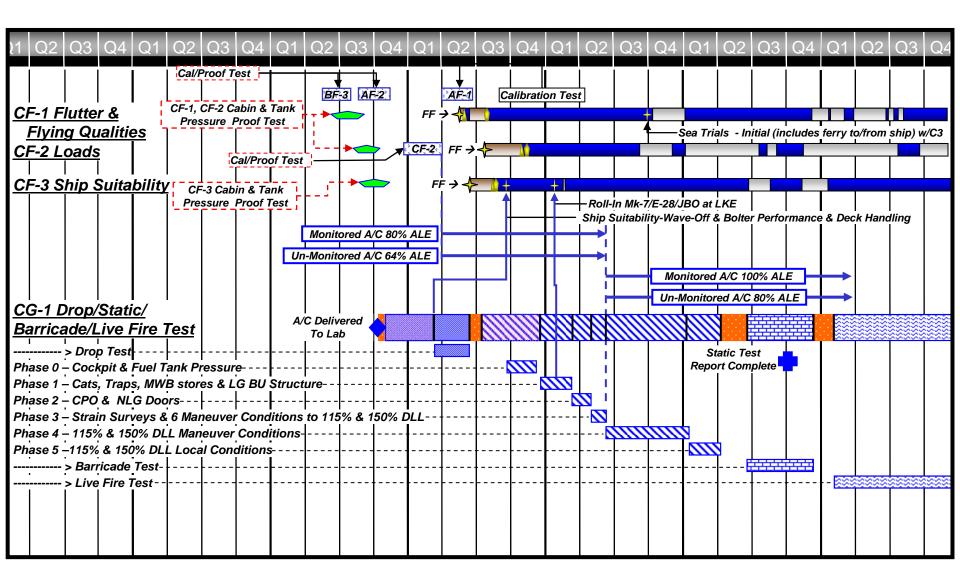
F-35 Schedule Integration


- An Integrated Flight & Ground Test Program Has Been Developed
 - Key Flight Envelope Expansion Milestones Defined
 - Test Conditions Sequenced to Support Progressive Flight Clearance Build Up
 - Proof Testing Incorporated to Provide Early Flight Envelope to 80% DLL for Loads Monitored Aircraft

Expanded View of STOVL Schedule



Expanded View of CTOL Schedule



Expanded View of CV Schedule

Summary

- F-35 Structural Test Program Benefits from Structural Similarity
 - Common Test Fixture Designs
 - Common Test Load Development Processes
 - Cross-Variant Verification Testing of Certain Structural Components
- Load Case Selection Process Ensures Static Test Adequacy
 - Earlier Support for Development of Test Arrangement
 - Additional Confidence in Resulting Selections
- Structural Test Program Developed to Support Flight Test Requirements
 - Test Conditions Are Deliberately Sequenced to Provide Timely Support for Key Flight Envelope Expansion Milestones
 - Proof Tests of the Loads Instrumented Aircraft Incorporated to Provide Earlier Flight Envelope Expansion

F-35 Structural Ground Test Program Has Been Developed as Part of a Thorough and Disciplined Structural Integrity Program

Questions

