330th Aircraft Sustainment Group

Combat Ready, Anytime, Anywhere

C-130 Center Wing Fatigue Cracking Lessons Learned: Application to ASIP Force Management Execution

Peter Christiansen

USAF C-130 ASIP Manager

- Acknowledgements
- Background
- Center Wing Box
- C-130 ASIP Status through April 2003
- C-130 ASIP Status June 2004
- Center wing independent Review Team and actions taken
- Fleet Sustainment
- Lessons Learned
- Recommendations/Considerations

- C130 Center Wing Independent Review Team
- Lockheed Martin Aeronautical Systems
- Mercer Engineering Research Center
- Center for Aircraft Structural Life Extension
- C-130 ASIP/Center Wing Team (Robins AFB)
- USAF C-130 maintainers and flight crews

C-130 Force Management

- The USAF C-130 Challenge
 - 47 permanent operating locations
 - Forward operating locations from Antarctica to Iraq
 - 9 Major Commands
 - 18 Mission Design Series
 - C-130E, C-130H, C-130J, AC-130H, AC-130U, EC-130H, EC-130J, HC-130N, HC-130P, LC-130H, MC-130E, MC-130H, MC-130P, MC-130W, NC-130H, TC-130H, WC-130H, WC-130J
 - 600+ active aircraft
 - Aircraft age varies from the first production C-130E (1961) to newly delivered C-130Js
 - Varied usage
 - Unit average flight hour consumption varies from 250 to 950 FH/yr
 - Usage of individual aircraft can vary more significantly
 - Varied Usage Severity

Combat Ready, Anytime, Anywhere

C-130 Center Wing

Center Wing Box Structure

- Original C-130E center wing found with significant center wing cracking at low flight hours during Vietnam conflict
- Center wing redesigned in 1968 to increase service life
 - Redesigned wing retrofitted to all C-130's worldwide starting in 1968 (except C-130A)
 - Basis for all production wings after 1968 including C-130J
 - Design goal 10K flight hours of Vietnam usage 27K EBH
 - Thickness of wing panels and stringers increased to reduce overall stress
 - Redesign led to 1150 lb weight increase (from 3800 lbs)

ASIP History prior to April 2003

C-130 IATP History

- Fatigue Life Monitoring 1968-1986
 - Fatigue based IATP using Palmgren-Miner method
 - Flights categorized in terms of 9 representative missions
- Fracture Tracking Programs
 - DADTA performed 1979-1985
 - Basis for introduction of crack growth based tracking
 - 1986-1999 IATP maintained on VAX mainframe
 - System discontinued in 1999 due to mainframe obsolescence and Y2K
 - Current system Oracle based relational database
 - Mission categorization 1621 missions
 - Gust and maneuver criteria based on L/ESS data (1980-90's data)
 - Initial capability in 2002
 - Numerous deficiencies identified 2002-03
 - System reached required maturity in 2004

- Flight data reporting prior to 2000
 - Flight engineer completed "bubble" sheet
 - Sheet mailed to ASIP office and scanned via optical scanner
 - Assessment

✓ 80%-90% reporting rate - Minimal effort required to mail sheets
X Quality - No opportunity to validate/correct erroneous data

- Flight data reporting 2000 Present
 - Flight engineer (FE) completes worksheet
 - FE enters flight data into database via internet
 - Assessment
 - ✓ **Quality** Input data is validated against various parameters

X Reporting Rate - Reporting reduced due to additional effort

Durability Testing

C-130 Wing Durability Test (WDT) conducted in 1989-1993

- Flight by flight spectrum (previous testing used block spectrum)
- Test conducted to 60K Cyclic Test Hours (CTH)
 - Spectrum developed to produce a severity of 2 (CTH/Baseline)
 - At 26K CTH, identified applied loads had overshot targets
 - Severity believed to be 3 for this period of testing
 - Problem corrected
 - Center wing loading decreased after 44K CTH due to damage
- Visual inspection predominate inspection method used during testing
 - Numerous cracks not identified until end of test
- Selected areas of test article removed, disassembled, and analyzed
 - Complete teardown not performed

- Service life assessment performed in 1995-1997
 - Economic service life determined by comparison to durability test
 - 50% Probability of Significant Localized Cracking as Determined from Full Scale Durability Testing
 - Localized cracking does not affect safety if inspections are performed at correct intervals and repairs are accomplished
 - Center Wing service life determined to be 60K EBH

- USAF C-130s utilize calendar based maintenance program
 - Isochronal inspections
 - Generally required on a yearly basis
 - Inspections accelerated for squadrons experiencing above average flying rates
 - Four work decks with annual, biannual, and 4 year intervals
 - ASIP requirements placed in work decks based upon average flight hours and severity
 - Programmed depot maintenance (PDM)
 - Depot level maintenance program required every 5 years
 - Initial PDM for new aircraft is 15 years (set by Controlled Interval Extension program on C-130H)
 - ASIP inspections performed for difficult to access areas
 - TCTOs issued as required to inspect locations with long recurring inspection intervals

Early Indicators

- 15 aircraft found with cracked corner fittings 2001-2002
 - 6 corner fittings severed

Combat Ready, Anytime, Anywhere

Early Indicators

- Cracked Rainbow fittings
 - First crack on wing durability test
 - Wing fail-safe for a single node crack
 - Replacements not tracked

Combat Ready, Anytime, Anywhere

- ✓ Established Economic Center Wing Service Life 60K EBH
 - ✓ Center wing replacement completed (2000) on 50 Special Ops A/C
 - ✓ High time C-130E aircraft scheduled for retirement
- ✓ Completed a full scale wing durability test (WDT)
- ✓ New Individual Tracking Program had just come online
- **X** Flight Data reporting had declined
- X L/ESS program cancelled (1990s) due to higher priority modifications
- **X** DADTA not updated since 1980s
 - **X** WDT results not used to update DADTA
- X Inspection program not flexible to changes in usage
- X Severe cracking discovered on center wing Corner Fitting
- X GWOT

Discovery – April 2003

- Aircraft found with 1.2" crack in center wing spar cap in April 2003
 - Crack longer than expected (based upon safety limit and previous inspection history)
 - Lockheed tasked to update DTA
 - Revised DTA included updated methodology and WDT results
 - Safety limit decreased from 73K to 19K EBH
- Urgent Action TCTO issued
 - A_{NDI}>2.0"
 - 8 additional aircraft found with cracks
 - Flight hour based inspection program instituted leading to more findings

Internal review of ASIP program

- Lockheed tasked to provide interim DTA updates for all Center Wing and Outer Wing fatigue critical locations
- ✓ Critical areas prioritized based upon risk and probability of cracking

	Zones	Risk	Freq	Test	In Service	Comments
CW-1	L/S General Spanwise Splice at WS 185.5	High	Low	Y	N	Lockheed reports in service cracking
CW-2	L/S Panel Stringer Attachments	Med	Low	Υ	Y	
CW-3	L/S Panel 2 Drain holes at WS 56.4	High	Low	Y	N	
CW-4	L/S - Panel 1 at Drag Fitting, WS 178.0	High	Med	Υ	Y	
CW-8	L/S - Panel 2 at Rainbow Fitting, WS 214.0	High	High	Υ	Y	
CW-9	LWR Rainbow Fitting at WS 214.0	Med	Med	Υ	Y	
CW-10	LWR FWD Corner Fitting at WS 214.0	Med	High	Y	Y	Inspected by TCTO's 1819/1828
CW-11	LWR FWD Spar Cap at WS 210	Med	Low	Y	N	
CW-12	LWR FWD Spar Cap at Web Stiff, WS 101	High	Low	Y	Y	
CW-15	LWR FWD Spar Cap at Web Stiff, WS 79	High	Low	Y	N	Lockheed reports in service cracking
CW-16	LWR Rear Spar Cap at Web Stiff, WS 80	High	Low	Y	N	Lockheed reports in service cracking

 TCTOs issued to inspect portions of Special Operations fleet and critical areas on high time aircraft

Combat Ready, Anytime, Anywhere

- TCTO 1875 issued to inspect Special Ops (SOF) aircraft that had not entered PDM cycle
 - 15 year initial PDM interval based upon standard C-130H usage
 - More severe usage of SOF led some locations to be beyond safety limit without inspection
 - SOF aircraft found with 3 consecutive nodes cracked on Rainbow fitting

Discovery – May/June 2004

- TCTO 1882 issued to inspect prioritized areas on high time aircraft
 - Over 100 cracks discovered in wing panels and rainbow fittings
 - Significant Multi-Site and Multi-Element damage discovered

Combat Ready, Anytime, Anywhere

- TCTOs had succeeded in identifying critical cracking allowing aircraft to be repaired and return to service
- X 60K EBH service life (SL) considered to be an economic SL
 - X Significant safety of flight cracking discovered below 60K EBH
 - X Cracking rates 5-10 higher than predicted in 1995 Service Life Assessment
 - X 4 aircraft had reached SL without retirement
- X Severe cracking discovered on corner fittings, wing panels, and rainbow fittings
- X GWOT

Needed Quantitative Method to Assess Service Life and Risk

Center Wing Independent Review Team (IRT)

- SEP 2004 Center Wing Independent Review Team Formed
 - To validate C-130 Service Life
 - To provide guidance on determining risk
 - Focused on 3 Center Wing FCL Zones
 - Concern over un-inspected area (95% of lower surface)
- Lead by Dr Gallagher, USAF ASIP Manager
- Lockheed Martin Aeronautical Systems
 - Developed unique analysis software and models which were required due to prevalence of MSD and MED
 - Reference 2005 and 2006 ASIP conference briefings by G.R. Bateman (Lockheed)

- Correlation analysis performed by Lockheed indicated that tracking program was over-predicting severity for low level operations
 - Tracking program rebaselined
 - Previously developed loads system and IAT updates allowed for quick implementation
 - 60K EBH service life rebaselined to 50K EBH
 - WDT Severity of first 26K CTH actually 2 (ILO 3)

- Grounding and Restriction thresholds established/implemented -Feb 2005
 - Aircraft restricted at 38K EBH 60 A/C restricted
 - Aircraft grounded at 45K EBH 30 A/C grounded
- ✓ TCTO 1908 inspection developed to perform complete lower surface inspection
 - Successful completion of inspection and repair allows restrictions to be removed
 - Does not allow aircraft to operate beyond the grounding threshold

- Aircraft discovered with wing panel cracking 30 flight hours after TCTO 1882 inspection had been completed
 - Revised TCTO issued with updated inspection procedures
 - Results suggested that as much as 50% of cracks were missed during initial inspection
 - Team assembled to perform Root Cause Analysis
 - AFMC Tiger team and Action team assembled
 - Not just a C-130 issue
- Implication to Center Wing problem
 - Second independent inspection added for most critical areas during TCTO 1908 inspection of lower surface

Finalized Inspection Requirement

Combat Ready, Anytime, Anywhere

TCTO 1908 Inspection Results

Inspection results

- 39 aircraft have been completed, 17 aircraft in-work
 - All aircraft found with fatigue cracking
- 37 of the 39 were repairable
 - 2 aircraft with damage beyond economical repair

Sustaining the Fleet

- Center wing cracking has decreased aircraft available to perform missions
 - Force realignment
 - Aircraft reassigned from ARC to active duty
 - Squadron sizes reduced to minimum requirement
 - Aircraft transferred between bases
 - Projections for future groundings and restrictions published on a weekly basis
 - Assumes uniform distribution of flight hours and severity across a squadron
 - Unrestricted aircraft performing multiple deployments to meet operational requirements
 - EBH consumption rates beyond projected levels
 - Deployed usage up to 4x home station usage

Effect of Repeated Deployment

- CW Service Life Management tool developed to allow MAJCOM and unit level visibility into the effect of aircraft scheduling
 - Schedule deployments and aircraft non-flying periods
 - Account for TCTO 1908 accomplishment
 - Look at the effectiveness of force structure changes
 - Identify potential aircraft shortfalls in the out years
 - Manage aircraft effectively until retirement or CW replacement

Lessons Learned

- Individual flight data
 - Reporting rates now exceed 95%
 - **1.** Educate the data providers on the importance of the data
 - 2. Provide up-to-date feedback on reporting quality and timeliness
 - 3. Human factors need to be considered
- Maintenance data
 - Extensive crack history database developed
 - 1. Collect crack data at time of discovery
 - 2. Categorize cracking by location
 - 3. Collect all inspection data cracks and no cracks
 - 4. Document all repairs and part replacements

Crack History Database

00287	00289	0032	.6							
RACK HISTORY RECORD #		originated by Christiansen, Pr	ter	ORIGINATED DATE		LAST UPDATED BY	UPDATED DATE 4/23/2007			
50520				Aircraf	Information	·				
					Zone Status at Tim	e of Discovery	FM Status at Tin	ne of Discovery		
JAIL NUMBER	LMSN		structural config. Logistics (FY '61)	COMPONENT INFORMATION:		C-130E	COMPONENT INFORMATION:	C-130E		
					COMPONENT HOURS:	19535	COMPONENT HOURS:	19535		
ASSIGNED ON HAT TIME OF DRA.	OVERT	MALCON	100 M 000 ADD0 M		VALENT BASELINE HOURS:	39285	EQUIVALENT BASELINE HOURS:	38374		
Description flip Descri			27	SEVERITY FACTOR:		2.01	SEVERITY FACTOR:	1.96		
Ramstein Air Base		USAFE	37	Discour						
ATE OF DISCOVERY (MM/DD/Y)	000			Distove	Icomment:					
2/23/1998					Information based	i upon fax from Ramste	ein AB			
AIRCRAFT LOCATION AT TIME OF	F DISCOVERY:				-					
Ramstein Air Base										
MAINTENANCE OCCURING AT TI	MEOF DISCOVERY:				7					
Unknown										
				Discrepa	ncy Information					
COMPONENT SERIAL NUMBER		398827			Cracking from counterbore					
-			-2		Type of Matters (Fing Constants Cong.					
MULTI-SITE-DAMAGE	<u> </u>	MU MU	LTI-ELEMENT-DAMAGE							
SHOW COMPONENT :	ZONE				and a second	22-				
-					10T					
SHOW FM ZONES					arrent a tenter To	1				
AIRCAT COMPONENT		AIRCAT ZO	NE w Rainhow Fta Nodes			0				
DTACOMPONENT		J/ - Lm	A Rainbow Ltg Nodes							
CW-11C - Lwr Rainbo	w Ftg Nodes									
STATION	STATION	NBR SIDE		CRACK	NG FROM	COMMENT:				
Wing Station	218.9	Right	<u>i</u>	Radiu	IS	Crack at no	Crack at node 16. Crack length is not reported on the fax, bu			
Fuselage Station 545.5		ELEMEN Wing	ग Joint Fitting (Rainbow)) CAUSEC Fatigi)FCRACK Je	installed.	installed.			
		CRACK	ORIENTATION	CRACKLENGTH						
Water Line	755.4	1417								

Lessons Learned

- Service Life Assessment
 - Risk based assessment performed
 - 1. Risk based inspection intervals appropriate for decreasing deterministic inspection intervals (not increasing)
 - 2. Document all inspections including no crack findings
- Performance and reliability of NDI
 - Comprehensive inspections required to maintain safety of flight
 - 1. Inspection of large areas difficult
 - 2. Human factors affect NDI reliability
 - 3. Multiple inspections may be required in critical areas
- Hole drilling and fastener installation
 - Majority of cracks from holes occurred at manually drilled holes
 - 1. Minimize fastener counts
 - 2. Maximize use of automated tooling

- Inspection scheduling
 - Calendar based requirements not responsive to usage changes
 - 1. Inspection requirements to field need to be on FH/EBH basis
- Fiscal constraints
 - Fiscal constraints can limit ASIP Force Management updates
 - L/ESS, DADTA updates, Teardown inspection of WDT article
 - Minimal damage in early life tends to "lull" focus on maintaining ASIP capabilities
 - 1. Communicate long term implications
 - 2. USAF prioritize ASIP requirements appropriately

- Replacement versus inspection
 - Large scale inspection requires significant aircraft downtime
 - 1. From aircraft availability standpoint, replace is more advantageous than inspection
 - CW Replacement ~1/2 downtime of lower surface inspection
 - Replacement will "Zero Time" the structure
- Replacement versus refurbishment
 - Refurbishment (selective replacement) proposed as a alternative to complete replacement
 - 1. No cost benefit to refurbishment
 - 2. Higher program risk
 - 3. Higher life cycle costs

- Unscheduled versus scheduled maintenance
 - Unscheduled maintenance limits ability of warfighter to complete missions
 - Aircraft found with cracking while deployed
 - Some aircraft required 2+ years to implement repairs
 - 1. Consider limited replacement during scheduled maintenance (PDM)
- Maintaining aircraft structure near end of service life
 - Substantial manpower and financial costs required near end of life
 - 1. Economic service life needs to consider aircraft availability requirement and manpower constraints

- Consider replacement/retirement before established service life
 - Increasing costs and diminishing aircraft availability near end of life
 - When sufficient crack data is available to perform detailed risk assessment, opportunity to schedule "orderly" replacement/retirement may be past
 - Consider performing residual strength tests on removed structure
- Ease of replacement of fatigue critical components should be considered during aircraft design
 - Aircraft continue to be used beyond initial design limits and more severely than originally intended
 - Do all fatigue critical components need to be designed to meet the original design life of the aircraft? Could overall life cycle costs be reduced by reducing weight and replacing components 2-3 times within the life of the aircraft?
- Consider minimizing reliance on inspection to insure safety of flight
- Worst case scenarios can happen

