ASIP 2007 Certification Issues for Hybrid Aircraft Structures

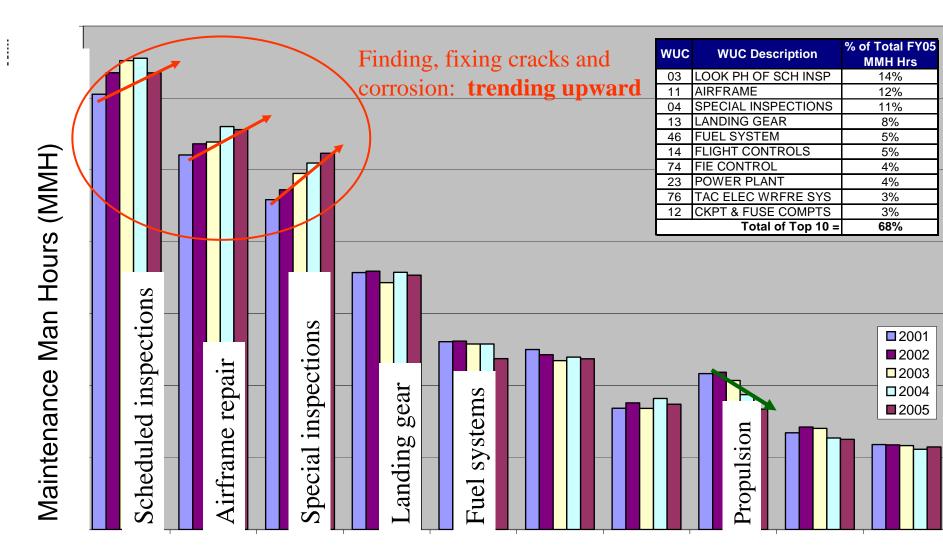
Col Rob Fredell, AF/ST

2007 Aircraft Structural Integrity Program

Palm Springs CA 5 December 2007

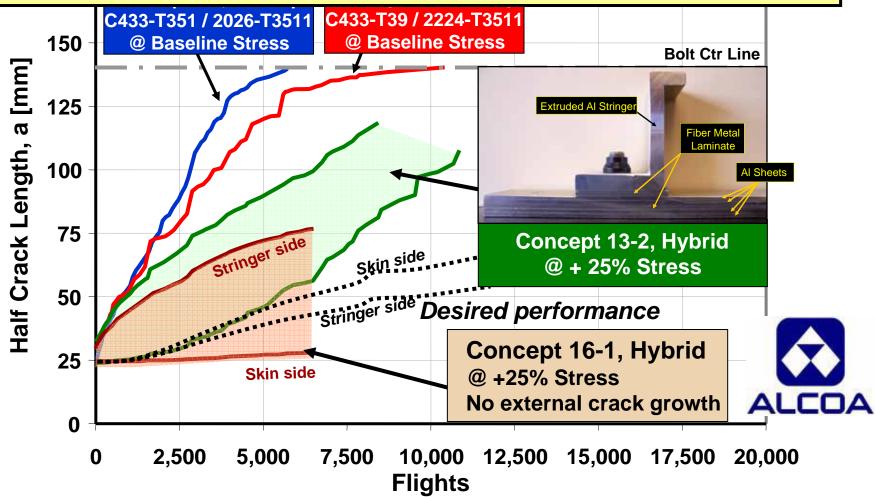
Overview

- USAF Structural Maintenance Trends
- Certification needs for Hybrid Structures
- Opportunity: "Design for Inspectability"

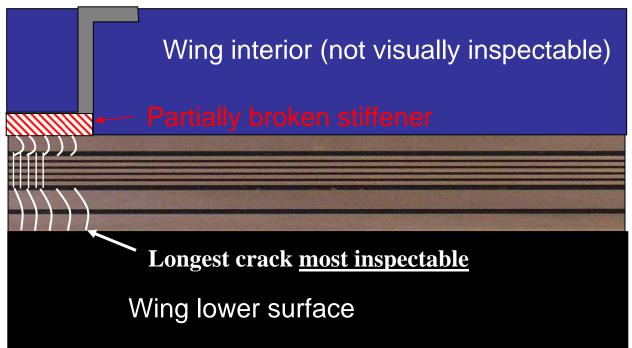


Previous ASIP Speakers:

- Peter Christiansen, C-130 Center Wing Box
 - Deployed 130s flying 4x the home station rate
 - Some aging 130s require 2 years of Mx to return to flight
 - > Need to reduce inspections by using "throwaway" components?
 - Replace center wing boxes more frequently?
- Lt Col Scott Fawaz, Effects of new K models
 Newman-Raju based K solutions unconservative
 USAF may need to inspect sooner and more frequently
- Dr. Markus Heinimann, Alcoa Adv Hybrid Wings
 "Care-free" hybrid structures available as low-risk option
 Greatly reduced inspection and repair
 - > 25% higher stress allowables + 4x longer fatigue lives
 - Apparent over-reliance on inspection costs \$\$\$, availability
 - Continued replacement with legacy alloys not effective
 - Dramatic improvements possible: big gains require bold thinking DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

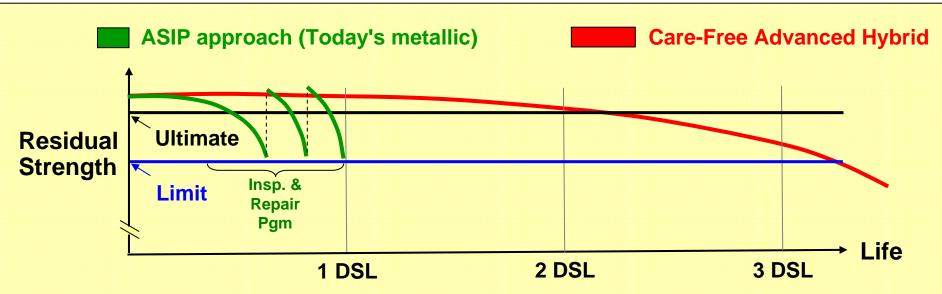

Top 10 Maintenance Drivers (MMH), Total AF

Maintenance Category


How to certify long life structure?

- Five principles of ASIP show the way to certify hybrid structures
- Best to follow mixed composite/metal approach like A380, B787
- Further inspectability improvements possible

Notional Modified CentrAlTM for Max Inspectability


- Lower wing skin with offset Glare layer
- Modified CentrAl[™] ensures skin side flaws are no smaller than stringer side
- Glare cracks grow slowest, give restraint

- Longest cracks always visually inspectable
- Slow crack growth plus visual inspectability = care-free structure
- Concept only; other variations may prove more effective

Certification via Damage Tolerance Approach

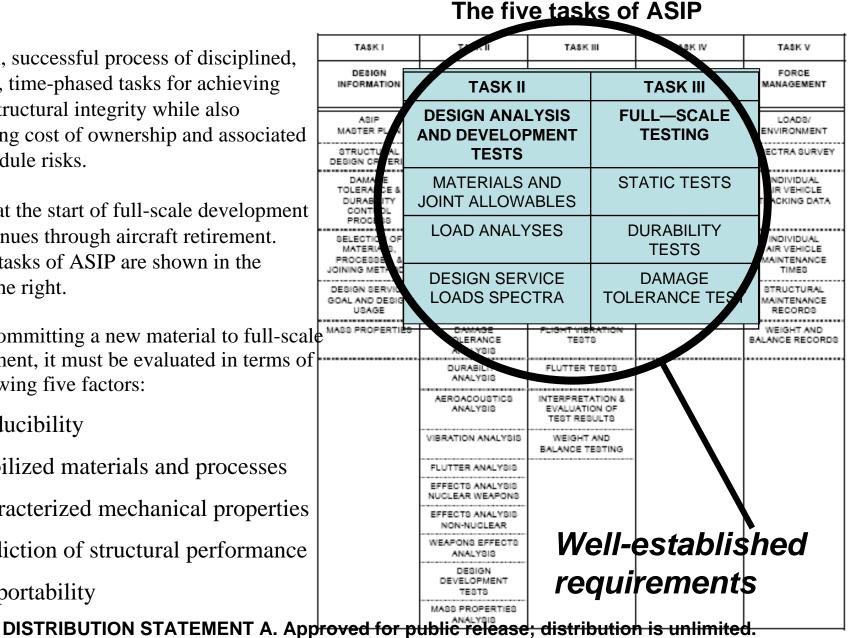
Conventional Aluminum and Hybrid FML Structures

Advanced hybrids offer promise of Care-Free structures:

- Extremely Slow Crack Growth behavior long inspection intervals
- Corrosion resistance: not simply trading one failure mode for another
- Impact, lightning strike resistance means accidental damage rare, visually detectable

New possibilities for minimizing life cycle costs:

- Significantly reduced inspection costs for corrosion and fatigue
- Tailorability of laminates can mean externally visible crack is worst case
- ✓ Metal-like repair practices reduces training, equipment bills
- Depot (heavy D) cycles can be extended greatly


Certification Needs for Hybrid Structures

STATES ARE TO BE

- Five principles of ASIP show the approved path
- Mixed composite/metal approach should apply
 - > Validate effects of defects (Ultimate load with largest undetectable defects)
 - > Validate "durability impact" (Strength, life after 6 ft-lb hemisphere impact)
- Validation of reduced costs for scheduled maintenance
 - > Eliminate fatigue as a life-limiting mechanism?
 - Substantially reduced corrosion?
 - > Extended inspection requirements?
 - Simplified requirements for "Barely Visible Impact Damage?"
- Durability testing <u>still required</u> for full-scale structure
- Validate extended life of hybrids with sub-scale panels to reduce costs?

USAF Aircraft Structural Integrity Program (ASIP)

- A proven, successful process of disciplined, managed, time-phased tasks for achieving aircraft structural integrity while also minimizing cost of ownership and associated cost/schedule risks.
- Initiates at the start of full-scale development and continues through aircraft retirement. The five tasks of ASIP are shown in the chart at the right.
- Before committing a new material to full-scale development, it must be evaluated in terms of the following five factors:
 - > Producibility
 - Stabilized materials and processes
 - Characterized mechanical properties
 - Prediction of structural performance
 - > Supportability

Summary

High inspection burdens costing USAF availability, money

> Frequent re-inspection to achieve structural integrity expensive

Hybrid solutions: excellent value proposition for long-life structures

Weight competitive with carbon fiber composites (CFRP), better impact performance

Supportability, LCC promise to be much better than AI or CFRP

Need to emphasize "design for inspection" of hybrid structures

- > Keep balance between inspection, fatigue, corrosion and repair
- > Tailored FML laminates make this possible, allow largest flaws to be externally visible

Composite-like approach needed to certify hybrid structures

- Greatly improved fatigue life implies transforms expected failure modes
- Conventional aluminum portions of structure still require durability testing
- > Akin to certification of mixed composite/metal structures
- > Need to validate "effects of defects" on structural integrity and durability

Reality of carefree airframes achievable

- > Long economic life and lowest life cycle cost must be realized
- Full-scale development of real wing structure the logical next step