

ASIP 2007 Palm Springs, CA

Airframe Reliability & Risk Assessment: Airframe Prognosis

Paul Hoffman Ph.D., P.E. *Structural Reliability & Risk Assessment Lead* NAVAIR Structures Division Patuxent River, MD 20670-1906 <u>mailto:Paul.Hoffman@navy.mil</u>

Outline

Fatigue Damage SAFE-Life Methodology

Notch Stress-Strain Response*

NAV

NOTE: Diagnostics (Data Intense)

Why SAFE-Life preferred?

Interpreting FLE; Probability of a > 0.01 inches (a.k.a. 10 mils) Note: 0.01 inches=0.25 mm << a_{critical}

Challenge: After Safe-life then what reliability/risk?

Why change? A New Era!

EA-6B with new wings, reset FLE=100%.

Motivation: Expect retirement FLE ~170% **Retirement of P-3 not on the horizon.**

Motivation: Flying beyond FLE=100%.

TTCP TP-4 CP C-130 Life Prediction

Motivation: All 5 nations well past initial service life

Outline

Structures Division's Perspective An Emerging Airframe Life Management Methodology

Airframe Prognostics/Prognosis

At the core a Quantitative Probability-Based

- Assessment of Current Airframe Integrity
 What's the probability distribution of damage?
- Prediction of Future Airframe Integrity
 What's the probability < residual strength?

Conceptually~Risk-Based Tracking

a_{service limit} is the maximum manageable crack size
 P_{SL} is the maximum acceptable probability of exceeding a_{service limit}
 Both are defined & justified by engineering within the organization

PROGNOSIS: Load-Cycle Induced Fatigue

- 1. Estimate initial (solid black) PDF with SDRS data from 100% FLE (red PDF)
- 2. Project future crack distribution (dashed gray curve) based on random load
- 3. Update after ΔFH_2 with known/tracked loads (solid black curve.)
- 4. With inspection and/or sensor indicating no cracking, update current crack PDF(solid blue curve.) Repeat for next interval ΔFH_3 and so forth

PROGNOSIS: Loads only model versus rogue! NAV///AIR

Can a sensor suite and an inspection schedule provide the feedback? Ideally detect some minimum threshold value with a virtual POD of 100%. Also the threshold must be less than the maximum risk taking crack a_{SI} .

SIPS

SIPS-Structural Integrity Prognosis System

- DARPA=Sponsor, NGC=Prime & NAVAIR=potential transition.
- The prognosis system/vision is founded on collaboration between sensor systems, advanced reasoning methods for data fusion and signal interpretation, and probabilistic physics-based models for fatigue
- Prototype Prognosis Process Validation/Demonstration:
 - EA-6B Outer Wing Panel (Laboratory) on-going
 - Next, conditionally, a P-3 (Commencing 3QFY08)
- OBJECTIVE: Fly an aircraft to its maximum usable life

