2007 USAF Aircraft Structural Integrity Program Conference

C-130 Center Wing Rainbow Fitting, Spare Redesign

P. Christiansen, WR/ALC Peter.Christiansen@robins.af.mil F. J. McElwain, LM Aero frank.mcelwain@lmco.com

5 December 2007

- MSD Risk Analysis of the Wing Joint Fitting
- Two Phase Redesign / Test Program for

Increased Service Life

Implementation

- Contract Team
- Orientation on the A/C
- Program Overview / Dates
- Context, Past ASIPs
 - MSD & MED
 - Risk Assessment
 - USAF IRT
 - Service Bulletins
- Choices
- Applicability of Redesign
- Redesign Goals

- Approach
- Material Choice
- Modeling
- DADTA Methods
- DADTA Locations
- Model Progression
- Redesign Configuration
- Redesign Service Life
- Redesign Goals Achieved
- Future Plans
- Conclusions / Lessons Learned

- Government Task Leader = Peter Christiansen, ASIP Mgr
- USAF Program Manager = John Sykes, 1LT
- Alternate GTL = Hollie Sipe

 Mercer Engineering Research Center (MERC) Team = Mary Schleider, Gerry Ringe, et al.

• LM Aero Team

C-130 Center Wing Box

Center Wing Box, Section View

2007 USAF ASIP Conference

Program Overview / Dates

<u>Phase 1 = 12 months, Sept 2006 to Sept 2007</u>

- Redesign the Center Wing Upper and Lower Rainbow Fittings for longer service life (LM Aero)
- Write a Test Plan (MERC)

Phase 2 = 24 months, Sept 2007 to Sept 2009

- Coupon Tests on 7249 (AFRL)
- Build 3-node test articles and TKI articles (LM Aero)
- Fatigue and Static Test (MERC)
- Follow-On Analysis (LM Aero)
- Trial Kit Installation (MERC)

2006 Presented on Risk Assessment Methodology for Wing Joint Ftg

- Prone to MSD Cracking
- Short "critical" crack length (0.07 in.)
- 35 A/C documented with in-service MSD/MED cracking:
 - Multiple Node Cracks (adjacent/non-adjacent)
 Adjacent Panel Cracks
- Three adjacent Node cracks reduce strength to below Design Limit

2006

– MSD Risk Analysis of the Wing Joint

2006

• USAF IRT Assessment:

"Rainbow Fitting Biggest Threat to Early Onset of Widespread Fatigue Damage"

• Service Bulletin 82-771, Rev 2:

"Wings – Center Wing Upper and Lower Rainbow Fitting Inspection for Cracks and Replacement"

Military:

- Initial = 10,000 EBH
- Recurring = 2,500 EBH (less than 25,000 EBH)
- Recurring = 1,000 EBH (more than 25,000 EBH)
- Replacement recommended at 25,000 EBH

• USAF TCTOs

Choices

- Inspect frequently > Undesirable
- Retire > Unacceptable
- Replace > With What?
 - Current Design
 - Frequent inspections and/or fitting replacements keep aircraft grounded for extended periods of time
 - First inspection interval at 8,500 EBH (USAF)
 - Frequency of recurring inspection
 - Replacement recommended at 25,000 EBH = approximately half of center wing service life

Redesign CW rainbow fittings for extended SL

- The new spare will replace C-130E/H/J :
 - Lower Fitting 398827-3/-4
 Upper Fitting 398335-3/-4, -1/-2 (slotted)

- The new spare is <u>NOT</u> appropriate for SOF/ESL CW's
 - By design, SOF/ESL fittings occupy more space

- Redesign with no changes/impact to outer rainbows
- Design for retrofit, C-130E thru C-130J
- Design service life of 38,000 EBH or greater
- Using a Damage Tolerance approach: Initial inspection interval ≥ 20,000 EBH Recurring inspection interval ≥ 5,000 EBH
- No negative impacts to inspection intervals for center wing panels and stringers

- Minimum mods to existing structure and none to wing joint bolt cutouts in the skin panel and stringer legs
- Use updated materials and finish for improved fatigue and corrosion resistance
- Sleeves, Bushings, ForceMate
- Redesign stringer splice angles
- No change to bolts, i.e. grip or type

- Design Concept
- CATIA Model
- FE Model
- Durability and Damage Tolerance Analysis
- Static Analysis
- Evaluate Results to Program Goals and Customer Guidance

Material Choice

• Currently 7075-T6511 Extrusion

Considered for Redesign

 7249-T76511
 7136-T76511
 7055-T76511
 Ti 6-4 MA
 PH 13-8
 Carbon Epoxy

• Matrix of Properties, Issues, Concerns, Risks

Mechanical Property			7249-T76511 to 1.499''	7055-T76511 0.5" - 3.0"	7136-T76511 0.25" - 3.0"	7075-T6511 0.5" - 0.749"
			B-basis	B-basis	B-basis	B-basis
Tension	F _{tu}	L	86	94	93	85
		LT	83	87	93	81
		L-45	_	_	_	-
	Fty	L	79	90	89	76
		LT	76	84	89	71
		L-45	_	_	—	-
	%e	L	7	10	7	7
	Е	L	10.4 x 10 ⁶	10.4 x 10 ⁶	10.4 x 10 ⁶	10.4 x 10 ⁶
Compression	F _{cy}	L	82	92	91	76
		LT	83	91	91	77
	Ec	L	10.5 x 10 ⁶	10.8 x 10 ⁶	10.6 x 10 ⁶	10.7 x 10 ⁶

	SCC Threshold per	Exfoliation					
	ASTM G47	Rating per ASTM			Eracturo 7	Toughnoss	
Alloy	(ksi)	G34	Alloy		kei (in)4/2 Minimum		
			Alloy		KSI (IN)1/2 MINIMUM		
Orientation	ST	ST	Orientatio	n	LT	TL	
7075-T6511	5	ED	7075-T65′	11	26	19	
7249-T76511	25	EB	7249-T765	11	31	23	
7055-T76511	66 (LT)	EB	7055-T765	11	27	23	
7136-T76511	25	EB	7136-T765	11	26	20	

7136 info

submitted

for MMPDS

Material Choice

- Replace with 7249-T76511
 - Static Strength
 - Corrosion / SCC
 - Durability Data
 - Application
 - Availability of Existing Data, P-3 Wing Program
 - Perform Specific Testing for Rainbow Application

Material Choice

Modeling

- Airframe Level
- Single Node Highly Detailed
- Preload
- Contact Forces
- Baseline FEMs
- Iterations

DADTA Methods

 Distribution of stress normal to the projected critical plane along a series of paths (shown as tubes)

DADTA Methods

- Stress Intensity Factor using variable aspect ratio ellipses via Newman and Raju Thumbnail Flaw solution matched to stress distribution
- Weight function + Flange Bending + Internal Load Redistribution after transition to through-the-thickness
- Longer cracks solutions using stress distributions from global airframe level FEM
- JSSG2006 initial flaw criteria for Durability and for Damage Tolerance

DADTA Locations

DADTA Locations

2007 USAF ASIP Conference

- Redesign for Barrel Washer
- Longer Bolts
- Local Integral Pad (0.150") to External Tang
- 7249-T76511 with New Extrusion Profile
- Straight-Shank Fasteners in Coldworked Holes
- Bushings in Bolt Holes
- Profile and Material of Lwr Attach Angles (15-5PH SS bar....was 7075-T73 forging)

Attach Angle, Stringer Sidewall to Rainbow

Re-profiled in 15-5PH Stainless

Reverse Taper

- 0.08" to approx 1/4"
- 0.11" to 0.07"

Redesign Test Configuration

Redesign Test Configuration

Redesign Service Life

CW11C Safety and Durability Limits

Redesign Goals Achieved

- All design goals were met with exception that:
 - the redesign requires a trim to wing panel cutouts
 - the redesign requires a change in bolt length
- All DADTA locations meet the 38,000 EBH goal using a scatter factor of 2, as required by JSSG.
- With the exception of CW-11A, all meet the SL requirement using a scatter factor of 4 (LM Aero selfimposed stretch goal)

Redesign Goals Achieved (cont'd)

• Using a damage tolerance approach, the redesigned fittings have initial inspection intervals that greatly exceed the goal of 20,000 EBH or greater.

• By analysis, the initial inspection occurs beyond the goal for service life (38,000 EBH). As a result, the intent of another program goal is satisfied, i.e. "……recurring inspection interval consistent with a damage tolerance approach of 5,000 EBH or greater".

Future Plans

- Completion of an upper surface model
- Further analysis of upper rainbow fitting
- 7249 coupon material testing
- ForceMate Analysis
- Fabricate and Assemble Test Articles
- Static and Fatigue Tests of 3-node articles
- Update of Analysis
- TKI
- Implementation

Conclusions / Lessons Learned

- Not Solved Simply by Barrel Washer Configuration
- External Pad
- Small Design Differences Can Have a Significant Impact on Service Life (1968 design and redesign)
- Analysis Indicates Significantly Longer Service Life (approximately five-fold improvement at CW-11C)

Questions

2007 USAF ASIP Conference

Lockheed Martin Aeronautics Company

FJM