

Aerospace and Telecommunications Engineering Support Squadron

Canadian Forces Generic Bolt Hole Eddy Current Probability of Detection Study ASIP 2007 05 Dec 2007 Palm Springs, CA

DJ Butcher¹, Catalin Mandache², Muzibur Khan²

- 1. Canadian Air Force, Aerospace and Telecommunications Engineering Support Squadron (ATESS), Nondestructive Testing Centre (NDTC)
- 2. Structures and Materials Propulsion Laboratory, Institute for Aerospace Research, National Research Council (NRC), Canada

Excellimus Auxilio

Excellence In Support

Outline

- Introduction
- Empirical Bolt Hole Eddy Current (BHEC)
 MIL HDBK 1823 Reliability Assessment
 - Design of Experiments (DoE)
 - Results
- Probability of Detection (PoD) Modeling
 - Why model?
 - Design of Experiments
 - Results
- So where is this going?
- Remaining Work
- Conclusion

Introduction

- What is PoD (in layman's terms)?
- Why do we need PoD?
- Why Model PoD?
 - MAPoDWG

www.cnde.iastate.edu/research/MAPOD

- This project was funded by the Canadian Air Force Director General of Aerospace Equipment Program Management (DGAEPM) to:
 - Reassess (and hopefully reduce) the current a_{90/95} assumption of 0.050" for Bolt Hole Eddy Current (BHEC) Inspections
 - Investigate Probability of Detection (PoD) modeling to be able to apply PoD results to other similar structure
 - i.e. Lockheed Martin box wing structures of the C130 and CP140 (P3)

- Test pieces were manufactured to represent the wing box structures of the C130 and the CP140 (P3)
- Test coupons included both EDM notches and lab grown cracks
- Test Coupons
 - Al 7075-T6
 - 3/16" fastener holes
 - 0.090" and 0.312" thickness (representing range of typical wing plank/spar/web thicknesses in CP140 and C130)
 - Two layer stack up

Empirical Study - DoE

- Four different coupon configurations
 - 1st Layer top surface corner cracks
 - 1st Layer mid-bore cracks
 - 1st Layer faying surface corner cracks
 - 2nd Layer back surface corner cracks
- EDM notches are also included each of the above configurations
 - Allows for direct comparison of EDM indications to crack indications
 - The EDM notches were mixed in with the cracks during the actual inspections

IAR Configuration 1 (Top skin corner)			
<u> </u>			
	0.090"		
	0.090"		

IAR Configuration 12	(Top skin mid-bore)
	0313"
	0.090"

Empirical Study - DoE

- Real P3 structure was chosen that had relatively few defects (as determined by BHEC, LPI, and enhanced visual inspection)
- EDM defects inserted and replicas made
- Structure reassembled with minimum amount of fasteners
- Inspected as per the Canadian Air Force Bolt Hole Inspections (draft GEN 74E)
- Performed fractography on all the fastener holes upon completion of the inspections to ascertain bolt hole condition
- Allows for direct measurement of noise in aged service structure
 - EDM notches in new material vs. EDM notches in aged/in-service material

Empirical Study - DoE

- So what do we have?
 - Each of the four configurations consists of 450-500 coupons
 - 60-80 lab grown cracks
 - 40-55 EDM notches
 - Distribution of crack sizes between 0.005" and 0.150"
 - Each of these sets were inspected by 7-24 inspectors
 - The retired P3 structure consisted of 151 holes
 - 40 EDM notches
 - In the end over 30000
 data points were collected

Empirical Study - Results

- Three different software codes were used to analyze the data
 - National Research Council of Canada (NRCC) code for hit-miss data
 - NRCC code for â vs. a data
 - Draft MIL HDBK 1823 software
- There are many ways to estimate the PoD
 - depends on the type of data, the functional form, the thresholds and confidence bounds calculation
- Only the data analyzed with the draft MIL HDBK 1823 software will be presented
 - â vs. a data, log-logistic functional form, and maximum likelihood ratio determination of confidence bounds

Results for Crack Depth c

Lab Grown Cracks $a_{90} = 10.7$ mils $a_{90/95} = 16.8$ mils False call = 0.49%

EDM Notches $a_{90} = 17.6 \text{ mils}$ $a_{90/95} = 26.7 \text{ mils}$ False call = 0.49%

Lab Grown Cracks

 $a_{90} = 13.2 \text{ mils}$

 $a_{90/95} = 25.3 \text{ mils}$

False call = 0.08%

EDM Notches

 $a_{90} = 18 \text{ mils}$

 $a_{90/95} = 30.0$ mils

False call = 0.08%

Lab Grown Cracks

 $a_{90} = 9.3 \text{ mils}$

 $a_{90/95} = 16.4 \text{ mils}$

False call = 0.77%

EDM Notches

 $a_{90} = 22.3 \text{ mils}$

 $a_{90/95} = 33.1$ mils

False call = 0.77%

Lab Grown Cracks $a_{90} = 6.7$ mils $a_{90/95} = 11.1$ mils False call = 0.05% EDM Notches $a_{90} = 16.8 \text{ mils}$ $a_{90/95} = 25.0 \text{ mils}$ False call = 0.05%

Results – EDM notches in Retired P3 wing structure

Lab Grown Cracks N/A **EDM Notches**

 $a_{90} = 26 \text{ mils}$

 $a_{90/95} = 32 \text{ mils}$

False call = 6.46%

- Location of defect within the hole is a factor
 - Cracks less < 0.040" gave a larger â than corresponding EDM notches

Lab Grown Cracks and EDM Notches in New Material					
		EDM	Crack	False Call	
Layer	Surface	$a_{90/95}$	$a_{90/95}$	Rate	
1st	Upper	27	17	0.49%	
1st	MidBore	30	25	0.08%	
1st	Faying	33	16	0.77%	
2nd	Back	25	11	0.05%	

EDM Notches in Retired P3 Wing Structure

		EDM	Crack	False Call
Layer	Surface	$a_{90/95}$	$a_{90/95}$	Rate
1st	Faying	32	N/A	6.46%

Empirical Study - Results

- Many factors must be taken into consideration when using this data
 - 1. Only the data from the first layer upper surface cracks and the second layer lower surface cracks are directly comparable (same set of specimens in different locations)
 - 2. The EDMs and cracks had different crack size distributions for the same configuration
 - Mean curves are dependent on the crack size distributions
 - Therefore the curves cannot be directly compared
- 3. There were less data points for the EDMs as compared to the cracks
 - Effects confidence bounds

Empirical Study - Results

- 4. The distribution of crack sizes is different between the configurations
 - The mid-bore cracks had a large number of large cracks (0.100' – 0.150' range) and less smaller cracks (0.010" – 0.020") -> this greatly influenced the PoD calculations
 - The faying surface corner cracks had a much larger number of smaller cracks as compared to the two other corner cracks configurations

a_{90/95} by itself does not provide sufficient information to be properly applied in risk analysis

- At this point, 3 different inspection sets have been evaluated:
 - Lab grown cracks in new material
 - EDM notches in new material
 - EDM notches in in-service material
- From the data a reliability assessment of cracks in real structure can be estimated

- Represents an inexpensive and more timely alternative to costly experimental PoD studies
- Has the potential to partially substitute and complement experimental PoD data
- Reduces cost, effort, resources
- Allows portability of PoD information across similar structures
- Helps in damage tolerance calculations and increases platform availability

Conditions:

- Validate model on a reduced set of specimens
- Use the same variables as the experimental study
- Simulate the same signal features of interest

- Used ECSim package (ISU) to model:
 - Defect length
 - Defect depth
 - Probe lift-off
 - Off-centre scanning
 - Frequency
 - Probe tilt
 - Material conductivity

Excellence in Support

PoD Modeling - DoE

Excellimus Auxilio

Excellence in Support

PoD Modeling – Results

Excellimus Auxilio

Excellence In Support

General principles of using numericalbased approach for estimating PoD

Consider only a change in the driving frequency:

Example

Example

PoD curve for 200kHz (as generated from the model predicted â data)

So where is this going?

The reliability assessment in defect detection in real structures can be estimated in five manners:

- 1. Developing a transfer function from the EDMs in new material to EDM in actual material and applying this function to the cracks in the new material (accounts for hole quality)
- Developing a transfer function from the EDMs in the new material to the cracks in the new material and applying this function to the cracks in the new material (accounts for crack/EDM relationship)
- Make noise measurements in the actual material and add these measurements to the â vs. a data for the lab grown cracks
 - 1. This can be accomplished using the new MIL-HDBK-1823 software (mh1823)
 - 2. This is more or less a variation of option 1
- 4. Using a validated model to predict the data
- 5. A combination of any of the above

- Estimate the PoD for cracks in real structure using the already generated empirical data (Transfer Function Approach)
 - Compare this to the noise analysis tool of the draft MIL HDBK 1823
- Validation of current model (using EC Sim) by experiment (Model Assisted Approach)
 - i.e. conduct a limited scope PoD for the midbore cracks at 200kHz and compare to the modeled PoD

- There are many different ways to determine a_{90/95}
 - Understanding how the number is generated is critical to proper application in risk analysis of in-service aerospace structures
 - Empirical studies are only valid for applications of the same parameters
- Estimates of a_{90/95} can be determined in three different manners:
 - Transfer Functions from existing PoD data
 - Model Assisted approach
 - A combination of both
- Once the processes are validated, estimates of a_{90/95} have the potential to significantly reduce the cost and time associated with empirical PoD studies
- The development of Transfer Functions and Model
 Assisted PoD methodologies is still ongoing

ATTERSS.

Questions?

Excellimus Auxilio

Excellence In Support