Air Force Materiel Command

ASIP PANEL SESSION

Addressing the NDI Crack
Miss Problem in Safety of
Flight Structures

Session Chair

John Brausch
System Support NDI Lead
Materials and Manufacturing Directorate
Air Force Research Laboratory

Panel Members

Lt. Col. Larry Butkus

Deputy Manager

USAF Aircraft Structural Integrity Program
Aeronautical Systems Center, Wright Patterson AFB

Mr. Karl Kraft

Propulsion NDI Manager
76th Propulsion Maintenance Wing
Oklahoma City Air Logistics Center, Tinker AFB

Panel Members

Capt. John Schmidt Head, Operational Psychology Department,

Naval Operational Medicine Institute
Pensacola NAS

Mr. John Goglia

Director

Center for Integrated Emergency Management Saint Louis University

The Catalyst

- In Spring of 2005, a flight restricted Air Force transport aircraft experienced moderate turbulence, which violated the restrictions. Aircraft wing structure was re-inspected per engineering direction.
 - → Two cracks found at only 24.3 hours after a previous depot inspection.
- Reinspections of several other aircraft identified cracks that should have been detected by a previous inspection.
- Analysis concluded that these cracks were "missed" during the TCTO inspection.

Not isolated to a single base or depot!

Cracks Missed

Challenging Inspection

NDI Tiger Team Findings AF Wide Issue

NDI Tiger Team Survey

- 4 of 43 AF aircraft systems reporting that nondestructive inspections missed cracks at various locations in past ten years.
- 42 individual documented misses in past 2 years
- Misses attributed to multiple factors:
 - Difficult locations to inspect
 - Incomplete inspection procedures
 - Adequacy of oversight
 - Adequacy of training
 - Lack of inspector sensitivity to criticality of task
 - Human Factors
 - Newness of organization to aircraft requirements

Air Force Audit Agency Findings

1999 Air Force ort

- Identified a serie promed inspections
- 10 bases evaluated
 - → 7 bases did 839 inspecti

- 136 (16%) of
- 81 (10%) inspections a "No Display of the Color of the Co

What Are The Root-Causes?

- Root-Cause Analysis not routinely accomplished unless mishap occurs
 - → Fortunately only one Mishap (Class B) in past ten years related to NDI misses in safety of flight structures
- Effective Corrective Actions not implemented

Have We Been Lucky??

What Makes For an Effective Inspection?

- Well Trained People
- Empowered People
- Motivated People
- Well Engineered Inspections
 - Clearly Defined Requirements
 - Suitable Equipment (Instruments, probes standards)
 - Human Factors Considered in Inspection Development
 - Clear Guidance and Documentation
 - Capability Meets Requirement
- Strong Organization
 - → Employee Feedback
 - Strong Proactive Management
 - Effective Oversight

Questions to Address

- How do we accurately identify the Root Causes and implement effective corrective action?
- What are the Human Factors driving NDI misses?
- Are the equipment, procedures and calibration methods effective?
- Are current training programs effective?
- Are the current Certification/Qualification programs effective?
- Is the organization effective?
- What can be learned from other services or agencies?

Undetected Cracks: Structural Significance and Root Cause Investigations

ASIP Conference - Panel Session:

"Addressing the NDI Crack-Miss Problem for Safety-of-Flight Structure"

30 November 2005

LtCol Larry Butkus
ASC/ENF
937-255-5503
larry.butkus@wpafb.af.mil

Traditional Damage Tolerance Inspection Philosophy

Dominant Air Power: Design For Tomorrow...Deliver Today

Inspections are performed at 1/2 the time it takes for a crack to grow from some initial (assumed) size [a₀] to a critical size [a_{crit}] (i.e. failure)

Crack Size

Traditional Damage Tolerance Inspection Philosophy

Dominant Air Power: Design For Tomorrow...Deliver Today

If a crack exceeds the detectable crack size [a_{NDI}] and is found and remedial action is taken, then another inspection time is computed

Classifying Undetected Cracks

Dominant Air Power: Design For Tomorrow...Deliver Today

The significance of an "NDI Miss" depends on the lengths of an undetected crack [a_{miss}] and of a crack that can grow to failure before the next inspection [a_{cr-miss}]

Classifying Undetected Cracks

Dominant Air Power: Design For Tomorrow...Deliver Today

- Type I Incident (a_{miss} ≥ a_{cr-miss})
 - Poses a high risk to flight safety or mission capability
 - Consequences:
 - Failure or potential failure of a safety-of-flight structural component before the next scheduled inspection
 - loss of life or aircraft
 - effects that could result in a Class A mishap
- Type II Incident $(a_{NDI} < a_{miss} < a_{cr-miss})$
 - Poses a moderate risk to flight safety or mission capability
 - Consequences: major readiness or economic impacts
- Type III Incident (a_{miss} ≤ a_{NDI})
 - Poses a low risk to flight safety or mission capability
 - Consequences: standard repairs to affected structure

Root Cause Investigation Methods

Dominant Air Power: Design For Tomorrow...Deliver Today

Type I Incident

- $(a_{\text{miss}} \ge a_{\text{cr-miss}})$
- Sequential Event and Causal Factor Analysis
 - "Walk-Through" analysis with Time-Sequence diagram
- Cause and Effect Analysis
 - "Fishbone" Diagram
- Human Performance Evaluation
 - Evaluation of inspectors and management
- Change Analysis
 - Comparison of expectations with actual events
- Type II Incident

- $(a_{NDI} < a_{miss} < a_{cr-miss})$
- Sequential Event and Causal Factor Analysis
- Cause and Effect Analysis
- Human Performance Evaluation
- (optional) Change Analysis
- Type III Incident

- $(a_{\text{miss}} \leq a_{\text{NDI}})$
- Informal data gathering & analysis and reporting

Final Thoughts

Dominant Air Power: Design For Tomorrow...Deliver Today

- The significance of an undetected crack depends on:
 - The length of the undetected crack
 - The length of a crack that can grow to failure before the next planned inspection
 - The planned inspection interval
 - The consequences of a failure resulting from the undetected crack
- Various root cause analysis techniques can be used to investigate "NDI Miss" incidents
 - Guidance has been drafted to assist in root cause analyses
- Next steps
 - Quantification of a_{NDI}
 - Linking to risk assessments

Classifying Undetected Cracks

Dominant Air Power: Design For Tomorrow...Deliver Today

OKLAHOMA CITY AIR LOGISTICS CENTER

TEAM TINKER

NDI COVERAGE: EDDY CURRENT & ULTRASOUND 9 NOV 05

Karl E. Kraft
76TH PMXG/MAEPE
DSN 336-4116
Karl.Kraft@Tinker.AF.Mil

OVERVIEW

Overview

Manual

Flaw Size

Coverage

Control

- Eddy Current (ET) and Ultrasonic (UT)
- Aircraft and Propulsion Depot and Field
- Aircraft and Propulsion Field Level Only

Manual Inspection

Overview

Manual

Flaw Size

Coverage

Control

- Propulsion components have much lower fatigue crack tolerance
- Propulsion handheld inspections are typically unplanned implementations
- Propulsion manual inspections often used to mitigate risk between scheduled maintenance intervals
- Propulsion part design change often follows inspection development to eliminate risk mitigating NDI procedures
- Propulsion component design is complex and typically requires one-of-a-kind probe/standard design no off the shelf probes
- Probe design is restricted by part geometry/access
- Propulsion probes purchased per acceptance test plan and often require matching to standard to ensure uniformity in inspection sensitivity and repeatability
- Sensitivity requirements mandate limiting operator control as much as possible to minimize false calls and ensure coverage
- Inspectors may require special training including successful completion of POD tests
- Methods like eddy current require the probe pass over flaw for detection ensuring coverage is critical
- Propulsion probes are designed to cover a specific coverage zone often smaller than the probe diameter
- Aircraft inspectors are tasked with covering zones many times larger than probe requiring careful attention to scanning and a methodical approach to ensure coverage

Aircraft Manual ET Surface Scan

Overview

Manual

Flaw Size

Coverage

Control

Engines Manual ET Scanning

Overview

Manual

Flaw Size

Coverage

Control

Manual UT Scanning

Overview

Manual

Flaw Size

Coverage

Control

Flaw Size

Overview

Manual

Flaw Size

Coverage

Control

Summary

ASIP largely uses assumptions

ENSIP based more upon POD

ENSIP flaw sizes roughly 10% of ASIPs

Ensuring Coverage

Overview

Manual

Flaw Size

Coverage

Control

- Scan control increases at depot compared to field
 - Parts disassembled from aircraft or engine
 - Aircraft UT subsurface (fatigue, corrosion, bonding, etc)
 - Propulsion ET fatigue cracks
- Automation increases at depot to ensure coverage
- Field inspections
 - Aircraft scan control
 - Less mechanical control
 - Inspections more operator dependent as inspector more often has two axis of freedom to move probe
 - Propulsion scan control
 - More mechanical control
 - Access limitations require special tooling to manipulate probe
 - Reduced operator dependence as inspector is restricted to single axis or no axis of freedom to move probe

Automated ET

Overview

Manual

Flaw Size

Coverage

Control

Automated UT Scanning

Overview

Manual

Flaw Size

Coverage

Control

Aircraft Semi-Automated UTScan

Overview

Manual

Flaw Size

Coverage

Control

Scanning Categories

Overview

Manual

Flaw Size

Coverage

Control

- 2 Axis Manual freehand no restrictions
- 1 Axis Manual free to move probe in one direction
- 0 Axis Manual go-no-go
- Bolthole Scanning scanner controls rotational speed while operator indexes down hole
- Controlled Fixture rigid test stand where operator centers probe and controls scan start/stop
- Semi-Automated operator starts/stops and calibrates system, but data acquisition and motion are controlled by machine
- Automated operator starts system and system runs to completion for operator buyoff

Scan Control Comparison

Overview

Manual

Flaw Size

Coverage

Control

Summary

ET	2 Axis	1 Axis	Go-No-Go	Bolthole Scanner	Controlled Fixture	Semi- Automatic	Automatic
Aircraft	129	17	31	81	0	2	0
Engines	0	14	2	3	35	0	368

UT	2 Axis	1 Axis	Go-No-Go	Semi- Automatic	Automatic
Aircraft	78	7	1	74	0
Engines	2	10	5	6	0

Propulsion Data for F100-220, F100-229, F101, F108, F110-100/129/400, F118, TF33 Aircraft Data for B-1B, B-52, E-3A, and C-135

Field Level Comparisons

Overview

Manual

Flaw Size

Coverage

Control

Summary

ET	2 Axis	1 Axis	Go-No-Go	Bolthole Scanner
Aircraft	9	4	0	4
Engines	0	5	0	0

UT	2 Axis	1 Axis	Go-No-Go
Aircraft	7	0	1
Engines	0	5	5

Propulsion Data for F100-220, F100-229, F101, F108, F110-100/129/400, F118, TF33 Aircraft Data for B-1B, B-52, E-3A, and C-135

Summary

Overview

Manual

Flaw Size

Coverage

Control

- Flaw size limits for engines are more stringent
- ENSIP utilizes measured reliability
- Scan control is key to ensuring inspection coverage, sensitivity, repeatability, and reliability
- Automation is employed at depot for aircraft and propulsion while field inspections are manual
- Manual propulsion inspections more frequently employ measures to control scanning
- Propulsion manual coverage zones are typically smaller than the probe sensing element
- Aircraft inspections require organization and attentiveness due to operator dependence and challenge covering large areas with a small diameter probe

TEAM TINKER

Human Factors Issues in Aircraft Inspection

CAPT John K. Schmidt, PhD MSC USN Naval Aerospace Medical Institute DET jkschmidt@nomi.med.navy.mil

Naval Aviation Class A Flight Mishaps FY50-04

776 Aircraft
Destroyed
in 1954

Class A Flight Mishap rate has range between 2 - 3 mishaps per 100,00 flight hours for the last decade

80% of Naval Aviation Class A Flight Mishaps Involve Human Factors

World Class Care...Anytime, Anywhere

Naval Aviation Human Factors Quality Management Board

Watershed Event

HFAMI Inspection Reports*

- The Maintenance Technician in Inspection
- Human Reliability in Aircraft Inspection
- Correlates of Individual Differences in NDI Performance
- Training for Visual Inspection of Aircraft Structures
- Evaluating the Visual Environment in Inspection
- Design of the Aircraft Inspection Information Environment
- HF Good Practices in Borescope Inspection
- HF Good Practices in Fluorescent Penetrant Inspection

Generic Inspection Task Descriptions

Step	Visual Example	NDI Example
Initiate*	Get and read job card & understand covered Area	Get and read job card, understand covered area, & calibrate
Access	Locate area on A/C; get into correct position	Locate area on A/C; get self and equipment into correct position
Search**	Move eyes across systematically, stop if any indication	Move probe over each rivet head, stop if any indication
Decision***	Compare indication against standard in memory (e.g., corrosion)	Reprobe while closely watching eddy current trace
Respond	Mark defect and write-up repair sheet, if no defect return to search	Mark defect and write-up repair sheet, if no defect return to search
Repair	Drill out and replace rivet	Drill out rivet, inspect rivet hole, drill out for oversized rivet
Reinspect	Visually inspect marked areas	Visually inspect marked areas

(Adapted from Drury The Maintenance Technician in Inspection)

Potential Strategies for Improving Inspection

Step	Changing Inspector	Changing System
Initiate*	Training in NDI calibration (Procedures)	-Redesign job/work cards -Calibration of NDI equipment -Feed forward of expected flaws
Access	Training in area location (Knowledge & recognition)	-Better support stands -Better area location system -Better Location of NDI equipment
Search**	Training in visual search (Cueing & spatial orientation)	-Improved lighting -Optical aids -Improved NDI templates
Decision***	Decision training (Feedback & standards)	-Maintain Inspection Standards -Pattern recognition job aids -Improved feedback to inspector
Respond	Train writing skills	-Improved fault marking -Hands free fault recording

Human Factors in Aircraft Inspection

- Example Considerations:
 - Ergonomic
 - Lighting, Access, Obstructions, Etc.
 - Training
 - Initial (Formal vs. OJT), Certification, & Recurrent
 - Supervision
 - Engineering support, Span of control, QA interaction, etc.
 - Reliability
 - Stress, Fatigue, IDs, Expectations, & Speed/Accuracy Trade-off
 - Work Aids
 - PUBs, Work Cards, Equipment, Etc.

Potential for Defense Breaches

NAVAL OPERATIONAL MEDICINE INSTITUTE

World Class Care...Anytime, Anywhere

